
 

Co-funded by the Horizon 2020 Programme of the European Union 

 
 

 

 
 

 
 

D3.2 FlexiGroBots Platform v2 
 

 

Disclaimer 

This document is issued within the frame and for the purpose of the FLEXIGROBOTS project. This project has received funding from the 
European Union’s Horizon2020 Framework Programme under Grant Agreement No. 101017111. The opinions expressed, and arguments 
employed herein do not necessarily reflect the official views of the European Commission. 

This document and its content are the property of the FLEXIGROBOTS Consortium. All rights relevant to this document are determined by the 
applicable laws. Access to this document does not grant any right or license on the document or its contents. This document or its contents 
are not to be used or treated in any manner inconsistent with the rights or interests of the FLEXIGROBOTS Consortium or the Partners 
detriment and are not to be disclosed externally without prior written consent from the FLEXIGROBOTS Partners.  

Each FLEXIGROBOTS Partner may use this document in conformity with the FLEXIGROBOTS Consortium Grant Agreement provisions.

Document Identification 

Status Final Due Date 31/12/2022 

Version 1.0 Submission Date 10/03/2023 

Related WP WP3 Document Reference D3.2 

Related 
Deliverable(s) 

D2.3, D3.1, D3.3 Dissemination Level (*) PU 

Lead Participant ATOS Lead Author Sergio García, ATOS 

Contributors SER, CSIC, WUR, VTT, 
BIO, ART, LUKE, IDSA 

 

Reviewers Ismael Suárez Cerezo, 
SER 

Ángela Ribeiro, CSIC 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   2 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Document Information 

List of Contributors 

Name Partner 

Sergio García ATOS 

Mario Triviño  ATOS 

Miguel A. Esbrí ATOS 

Daniel Rodera ATOS 

A. Carlos Cob Parro ATOS 

Daniel Calvo ATOS 

Mar Ariza Sentís WU 

Sergio Vélez WU 

João Valente WU 

Marko Panić BIO 

Oskar Marko BIO 

Juha-Pekka Soininen VTT 

Kari Kolehmainen VTT 

Ángela Ribeiro CSIC 

Álvaro López CSIC 

Artur Bogucki CEPS 

Moritz Laurer CEPS 

 

Document History 

Version Date Change editors  Changes 

0.1 07/11/2022 Sergio García (ATOS) Initial document 
outline 

0.2 18/11/2022 Miguel A. Esbrí (ATOS), Daniel Rodera 
(ATOS) 

Section 4 

0.3 23/11/2022 A. Carlos Cob (ATOS) Section 3 and 
section 2 

0.4 02/12/2022 Mario Triviño (ATOS) Section 5 

0.5 05/12/2022 Sergio García (ATOS) Section 1 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   3 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Document History 

Version Date Change editors  Changes 

0.6 05/12/2022 Marko Panić (BIO), Oskar Marko (BIO) Section 2 

0.7 06/12/2022 Daniel Calvo (ATOS) Section 1.2 

0.8 07/12/2022 Juha-Pekka Soininen (VTT), Kari 
Kolehmainen (VTT) 

Section 6 

0.9 07/12/2022 Sergio García (ATOS) Conclusions 

0.10 12/12/2022 Mario Trivino (ATOS)  Section 5.2.1  

0.11 12/12/2022 Angela Ribeiro (CSIC) Complete section 6 
and include Annex 
B 

0.11 13/12/2022 Juha-Pekka Soininen (VTT) Complete section 6 

0.12 13/12/2022 Angela Ribeiro (CSIC) Adjustment of 
content Annex B 

0.13 14/12/2022 Sergio García (ATOS) Formatting 

0.14 16/12/2022 Sergio García (ATOS) Styling 
improvements 

0.15 24/01/2023 Artur Bogucki (CEPS), Moritz Laurer (CEPS) Section 1.4.3 

0.16 26/01/2023 Juha-Pekka Soininen (VTT) Minor additions to 
section 6 

0.17 31/01/2023 Oskar Marko (BIO) Minor additions to 
section 2 

0.18 01/02/2023 A. Carlos Cob (ATOS) Additions to section 
3 

0.19 01/02/2023 Mario Trivino (ATOS) Sections 1.4.1.2 and 
1.4.2 

0.20 06/02/2023 Sergio García (ATOS) Major additions to 
section 1 and 2.3 

0.21 10/02/2023 Angela Ribeiro (CSIC) Minor additions to 
section 6 and 
Annex B 

0.22 20/02/2023 Mario Trivino (ATOS) Annex A 

1.0 01/03/2023 Sergio García (ATOS) FINAL VERSION TO 
BE SUBMITTED 

 

 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   4 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Quality Control 

Role Who Approval Date 

Deliverable leader Sergio García, ATOS 01/03/2023 

Quality manager Ivan Zaldivar Santamaria, ATOS 09/03/2023 

Project Coordinator Francisco Javier Nieto de Santos, ATOS 10/03/2023 

 

  



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   5 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Table of Contents 

Document Information ............................................................................................................... 2 

Table of Contents ....................................................................................................................... 5 

List of Figures .............................................................................................................................. 8 

List of Tables ............................................................................................................................. 10 

List of Abbreviations ................................................................................................................. 11 

Executive Summary .................................................................................................................. 12 

1 Introduction ....................................................................................................................... 13 

1.1 Purpose of the document .......................................................................................... 13 

1.2 Relation to other project activities ............................................................................ 14 

1.3 Structure of the document ........................................................................................ 15 

1.4 Addressing M18 review outcome .............................................................................. 15 

1.4.1 Platform’s architecture, implementation, and components integration ......... 16 

1.4.2 Specialization on agriculture ............................................................................ 19 

1.4.3 The AI Platform and Trustworthy AI ................................................................. 20 

1.4.4 Platform components inventory ...................................................................... 21 

2 Artificial Intelligence platform ........................................................................................... 25 

2.1 Implemented functionalities ...................................................................................... 25 

2.2 Requirements ............................................................................................................. 27 

2.2.1 Technical requirements .................................................................................... 27 

2.2.2 Functional requirements .................................................................................. 28 

2.3 Data models ............................................................................................................... 28 

2.4 Application Programming Interfaces (APIs) ............................................................... 29 

2.5 Graphical User Interfaces (GUIs) ................................................................................ 29 

2.6 Installation .................................................................................................................. 32 

2.7 Prototype availability within FlexiGroBots ................................................................ 32 

2.8 Release planning ........................................................................................................ 33 

3 Common data services ...................................................................................................... 34 

3.1 Implemented functionalities ...................................................................................... 35 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   6 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

3.2 Requirements ............................................................................................................. 38 

3.2.1 Technical requirements .................................................................................... 38 

3.2.2 Functional requirements .................................................................................. 38 

3.3 Data models ............................................................................................................... 39 

3.4 Application Programming Interfaces (APIs) ............................................................... 40 

3.5 Graphical User Interfaces (GUIs) ................................................................................ 40 

3.6 Installation .................................................................................................................. 41 

3.7 Prototype availability within FlexiGroBots ................................................................ 41 

3.8 Release planning ........................................................................................................ 42 

4 Geospatial enablers and services ...................................................................................... 43 

4.1 Implemented functionalities ...................................................................................... 43 

4.2 Requirements ............................................................................................................. 44 

4.2.1 Technical requirements .................................................................................... 44 

4.2.2 Functional requirements .................................................................................. 44 

4.3 Data models ............................................................................................................... 46 

4.4 Application Programming Interfaces (APIs) ............................................................... 57 

4.5 Graphical User Interfaces (GUIs) ................................................................................ 57 

4.6 Installation .................................................................................................................. 57 

4.7 Prototype availability within FlexiGroBots ................................................................ 58 

4.8 Release planning ........................................................................................................ 59 

5 Common application services ............................................................................................ 60 

5.1 Situational Awareness ................................................................................................ 60 

5.1.1 SLAM ................................................................................................................. 60 

5.1.2 People detection, location, and tracking .......................................................... 64 

5.1.3 People action recognition ................................................................................. 68 

5.1.4 Moving objects detection, location, and tracking ............................................ 71 

5.2 Utilities ....................................................................................................................... 74 

5.2.1 Orthomosaic Assessment Tool ......................................................................... 75 

5.2.2 Anonymization Tool .......................................................................................... 77 

5.2.3 Automatic dataset generation .......................................................................... 80 

5.3 Generalization ............................................................................................................ 85 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   7 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

5.3.1 Disease detection ............................................................................................. 85 

5.3.2 Pest detection ................................................................................................... 89 

5.3.3 Weed detection ................................................................................................ 93 

6 Mission Control Centre ...................................................................................................... 96 

6.1 Implemented functionalities .................................................................................... 100 

6.2 Requirements ........................................................................................................... 104 

6.2.1 Technical requirements .................................................................................. 104 

6.2.2 Functional requirements ................................................................................ 105 

6.2.3 Requirements for external systems ................................................................ 109 

6.3 Data models ............................................................................................................. 110 

6.3.1 Communication protocols .............................................................................. 110 

6.4 Application Programming Interfaces (APIs) ............................................................. 113 

6.5 Graphical User Interfaces (GUIs) .............................................................................. 114 

6.6 Installation ................................................................................................................ 115 

6.7 Prototype availability within FlexiGroBots .............................................................. 115 

6.8 Release planning ...................................................................................................... 116 

7 Conclusions ...................................................................................................................... 118 

References .............................................................................................................................. 120 

Annex A: Model Cards and Dataset Datasheets .................................................................... 125 

Annex B: Robot Task Planner ................................................................................................. 139 

Representing the solution ............................................................................................... 143 

 

 

  



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   8 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

List of Figures 

Figure 1 Deliverables linked to D3.2 ...................................................................................................................... 14 

Figure 2 FlexiGroBots platform development depicted in D2.3, labelling the scope of the tasks in WP3 ............. 17 

Figure 3 AutoML procedure with training and testing pipelines ........................................................................... 25 

Figure 4 After an experiment is finished, results are stored inside an XML file with hyperparameters and results 

for row detection ................................................................................................................................................... 26 

Figure 5 Training results are accessible by TensorBoard ...................................................................................... 27 

Figure 6 Initiating an experiment run through Kubeflow GUI ............................................................................... 30 

Figure 7 Definition of hyperparameters within the training pipeline through Kubeflow GUI ............................... 30 

Figure 8 MinIO’s log in web interface ................................................................................................................... 31 

Figure 9 MinIO main interface .............................................................................................................................. 31 

Figure 10 Migration from Docker Compose to Kubernetes ................................................................................... 35 

Figure 11 Data Space connector architecture. Source "https://github.com/International-Data-Spaces-

Association/DataspaceConnector/blob/main/docs/assets/images/container-overview.jpg" ............................. 36 

Figure 12 Data Space connected with the pilots and data lake ............................................................................ 37 

Figure 13 Communication architecture for the integration of the Data Space and the AI subsystem .................. 37 

Figure 14 IDSA data model .................................................................................................................................... 39 

Figure 15 Example of Base64 encoding................................................................................................................. 40 

Figure 16: Dataspace Connector version 8.0.2 ...................................................................................................... 40 

Figure 17 Folder structure and file names of the different products for various UAV flights in the Spanish pilot 

area ....................................................................................................................................................................... 45 

Figure 18: Relation of "stac-generator" Python script with the ODC components ............................................... 46 

Figure 19 Visualization and integration of the different raster layers offered by ODC using the QGIS tool (images 

correspond to points 1 and 2 respectively) ........................................................................................................... 58 

Figure 20 Frames resulting from the application of the algorithm [32] on video from Pilot 1 ............................. 61 

Figure 21 GUI of pose estimation and 3D reconstruction in indoor scenario with stereo camera [33] ................ 62 

Figure 22 3D positional tracking and mapping with Zed2i stereo cam. Source: [33] ............................................ 63 

Figure 23. Output frames from PDLT app: RGB with detection info (left), monocular depth estimation (right) .. 65 

Figure 24. Segmentation and erode process to estimate mean object depth ....................................................... 66 

Figure 25 PDLT pipeline description ...................................................................................................................... 66 

Figure 26 Human action recognition application applies to raw images from Pilot 1 .......................................... 69 

Figure 27 MODLT pipeline description .................................................................................................................. 72 

Figure 28 Output frames from MODLT common application pipeline .................................................................. 72 

Figure 29. Anonymized faces modes in FlexiGroBots’ common application ......................................................... 78 

Figure 30 Fake face generation with DeepPrivacy GAN [46] ................................................................................ 78 

Figure 31 ADGT pipeline description ..................................................................................................................... 81 

Figure 32. Dataset request input options for the first step: raw data collection .................................................. 81 

Figure 33 Images automatically tagged with Detic [34], extracted from the LAION-5b [48] data lake................ 82 

Figure 34. FiftyOne GUI for generated dataset visualization ................................................................................ 82 

Figure 35 DGT output data architecture ............................................................................................................... 84 

Figure 36 Blueberries detection and segmentation with FlexiGroBots’ common app .......................................... 86 

Figure 37 Grapes detection and segmentation with FlexiGroBots’ common app ................................................. 87 

Figure 38 Pilot 2 raw image example for “meligethes aeneuss” detection .......................................................... 90 

Figure 39 Trap segmentation and insect detection with FlexiGroBots’ common app ........................................... 91 

Figure 40 Pest detection pipeline description ....................................................................................................... 91 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   9 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Figure 41 Weed/Crop segmentation with FlexiGroBots’ common app on [51]..................................................... 94 

Figure 42. Architecture diagram of Mission Control Centre .................................................................................. 97 

Figure 43. MCC deployment example ................................................................................................................. 100 

Figure 44 Activity diagram of mission planning and execution .......................................................................... 108 

Figure 45 Activity diagram for mission phase execution ..................................................................................... 109 

Figure 46 Structure of the mission file................................................................................................................. 111 

Figure 47 Data exchange between Mission manager and service through data space ...................................... 113 

Figure 48 Screenshot from fleet supervisor and controller prototype and a robot simulator ............................. 114 

Figure 49 Main window of the robot task planner .............................................................................................. 115 

Figure 50 Field divided into 7 tracks of 5 crop rows each ................................................................................... 140 

Figure 51 (a) Irregularly shaped fields with varying crop directions and (b) their representation on tracks ...... 140 

Figure 52 Procedure summarising the most external part of the operation of the three selected meta-heuristic 

algorithms ........................................................................................................................................................... 143 

Figure 53 Orientations of a crop ......................................................................................................................... 145 

Figure 54 The six possible trajectories according to Dubins' theorem [57] between two points with fixed exit 

orientation and entry orientation ....................................................................................................................... 146 

Figure 55 Manoeuvre types for a vehicle of radius 𝑟𝑚𝑖𝑛 in a regular field. (a) ∏-turn, (b) Ω-turn and (c) T-turn 147 

Figure 56 Trajectories associated with the permutation 𝜎 = (𝑝3, 𝑝6, 𝑝8, 𝑝10, 𝑝10, 𝑠2, 𝑝7, 𝑝2, 𝑝1, 𝑠1, 𝑠3, 𝑝9, 𝑝4, 𝑝5) and 

the vector of refuelling 𝑏 = (1,0,1,0,0,0,0,0,0,0) .................................................................................................. 148 

 

  



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   10 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

List of Tables 

Table 1 Summary of the building blocks that compose the FlexiGroBots platform .............................................. 24 

Table 2 User stories for the AI platform ................................................................................................................ 33 

Table 3 User stories for the ADS ............................................................................................................................ 42 

Table 4 User stories for the geospatial processing and services ........................................................................... 59 

Table 5 User stories for SLAM ............................................................................................................................... 64 

Table 6 User stories for people detection, location, and mapping ........................................................................ 68 

Table 7 User stories for people action recognition ................................................................................................ 71 

Table 8 User stories for moving objects detection and tracking ........................................................................... 74 

Table 9 User stories for GIS plug-in ....................................................................................................................... 77 

Table 10 User stories for anonymization ............................................................................................................... 80 

Table 11 User stories for automatic dataset generation ...................................................................................... 85 

Table 12 User stories for disease detection ........................................................................................................... 89 

Table 13 User stories for pest detection ................................................................................................................ 93 

Table 14 User stories for weed detection .............................................................................................................. 95 

Table 15 Main parts of MCC and their deployment options ................................................................................. 99 

Table 16 Mapping of functional requirements from D2.3 to MCC components ................................................. 102 

Table 17 Mapping of new user stories to MCC components ............................................................................... 102 

Table 18 Implementation status of main MCC components in FlexiGroBots platform v1 .................................. 103 

Table 19 Release plan of MCC components ........................................................................................................ 117 

Table 20 User stories for MCC ............................................................................................................................. 117 

Table 21 Model card: MODTL TPH-YOLO detector .............................................................................................. 133 

Table 22 Dataset datasheet: Visdrone-Tractor-v1 .............................................................................................. 138 

Table 23 Plan of vehicle 1 coded in the solution in Figure 56 .............................................................................. 149 

 

  



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   11 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

List of Abbreviations 

Abbreviation / 
acronym 

Description 

ADS Agriculture Data Space (ADS) 

AI Artificial Intelligence 

AWS Amazon Web Services 

CVRP  Capacitated Vehicle Routing Problem 

DL Deep Learning 

DS Data Space 

GDAL Geospatial Data Abstraction Library 

GeoTiff Georeferenced TIFF 

GPU Graphics Processing Unit 

IDSA International Data Space Association 

JSON JavaScript Object Notation 

MCC Mission Control Centre 

ML Machine Learning 

mTSP Multi Traveling Salesman Problem 

NSGA-II Non-dominated Sorting Genetic Algorithm II 

ODC Open Data Cube 

OGC Open Geospatial Consortium 

QGIS QGIS is a free and open-source cross-platform desktop geographic 
information system application that supports viewing, editing, printing, 
and analysis of geospatial data 

STAC Spatio-Temporal Asset Catalogue 

TSP Traveling Salesman Problem 

TLS Transport Layer Security 

UAV Unmanned Aerial Vehicle 

VM Virtual Machine 

YAML YAML Ain't Markup Language 

WP Work Package 

 

  



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   12 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Executive Summary 

The purpose of deliverable D3.2 is to collect the progress made in FlexiGroBots’ WP3 (Platform 

development) during the last months of work –specifically from January 2022 (M13) to 

December 2022 (M24). This is the second out of three deliverables corresponding to this work 

package. D3.3 will be published in December 2023 (M36), at the end of the project. 

The concepts underlying this WP remain the same as those included in D3.1 [1] –please refer 

this document for the complete content. In short, “The FlexiGroBots platform is devoted to 

enabling the usage of flexible and heterogeneous multi-robot systems for intelligent 

automation of precision agriculture operations. It implements:  

• An Agriculture Data Space (ADS) based on the existing solution from the International 

Data Spaces Association (IDSA). The ADS will enable data sharing across pilots ensuring 

sovereignty, governance, and security. 

• The components supporting Machine Learning Operations (MLOps), addressing the 

complete lifecycle of the ML models. 

• The enablers to deploy geospatial data management, access and processing 

capabilities following Open Geospatial Consortium’s (OGC) standards. 

• The common and general applications and services, implemented with multiple 

purposes to be used off the shelf by more new farmers. 

• The Mission Control Centre (MCC), a solution to plan, execute and monitor the 

operation of fleets of flexible and heterogeneous robots –providing the maximum 

standards in terms of safety– integrated with the rest of the components of the 

platform through the ADS.” 

This document describes thoroughly the status of these components at M24 of the project 

following the same document structure used for D3.1. This will make it easier for the reader 

to understand the progress, improvements and changes carried out within the project since 

the first version of this deliverable (M12). The advances corresponding to the last year of the 

project that are included in this document are also supported by the progress of the 

developments in the project’s repository: https://github.com/FlexiGroBots-H2020 

The main conclusions of the document are that some of the main components of the platform 

are deployed –including the Artificial Intelligence prototype, the Data Space, and the 

geospatial data management platform– as well as some of the core components of the 

Mission Control Centre. Additionally, common applications for different purposes have been 

developed on top of, mainly, the Artificial Intelligence platform. Moreover, this second version 

of the deliverable also details those developments that have not been successfully completed 

within the time allotted to some tasks of the work package. For this reason, updated 

workplans are established, not only for those tasks whose duration extends to the third year 

of the project, but also for those that have not been completed.  

https://github.com/FlexiGroBots-H2020


 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   13 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

1 Introduction 

1.1 Purpose of the document 

The goal of this document is to describe the FlexiGroBots platform at the end of the second 

year of the project. For the sake of brevity and since this document is the second iteration of 

D3.1, the same statements will not be repeated here –please refer D3.1 for the complete 

description of document’s purpose. In summary, the FlexiGroBots platform is made up of the 

following components: 

• Artificial Intelligence (AI) platform. 

• Common data enablers and services. 

• Geospatial enablers and services. 

• Common application services. 

• Mission Control Centre. 

The status of the developments corresponding to each of these components is described in 

this document following the structure that was already introduced in the previous version of 

the deliverable (D3.1): 

• Implemented functionalities. 

• Requirements: technical and functional. 

• Data models. 

• Application Programming Interfaces (APIs). 

• Graphical User Interfaces (GUIs). 

• Installation procedure. 

• Prototype availability within FlexiGroBots. 

• Release planning. 

It is worth noting that the effort put into the project during the last year enables now to 

include more information on aspects that were not sufficiently consolidated in the previous 

version of this document, such as data models for some of the components. 

Other more general aspects of the work package have not changed either: 

• The Agile methodology has been continued for the planning and monitoring of the 

tasks –user stories– that allow the different developments to be carried out. The status 

of these tasks is reviewed in monthly retrospective meetings –according to sprints 

length. 

• The use of open-source code both for platform components –those relying on existing 

software– and for the outcomes of the project. 

Please refer D3.1 if further information is required regarding any of the previous topics. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   14 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

1.2 Relation to other project activities 

Deliverable D3.2 is the interim outcome of WP3 - Platform development, wrapping the results 

of several tasks: T3.1 - AI platform, T3.2 - Common data enablers and services, T3.3 - 

Geospatial enablers and services, T3.4 - Common application services and T3.5 - Mission 

Control Centre.  

 
Figure 1 Deliverables linked to D3.2 

The content of D3.2 summarises the implementation status at the end of the second year of 

the project for the prototypes built in these five tasks, considering as starting point the results 

reported in the previous document D3.1. 

The corresponding functionalities have been implemented taking into account the 

requirements (functional and non-functional) that were specified in D2.2 and the final 

technical architecture proposed by D2.3. The evolution of the prototypes with respect to the 

previous version is also the result of the tests and validation activities done in with the three 

project pilots, which will be described in detail in D4.2, D5.2 and D6.2. A consolidated and 

common assessment is included in D2.8. 

As introduced in D3.1, the five tasks of WP3 are following continuous, iterative and agile 

development methodology to develop the multiple components that are part of the 

FlexiGroBots platform. New versions of the platform are being released with more advanced 

functionalities so that they can be integrated, demonstrated and assessed by the pilots. The 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   15 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

final results will be reported on D4.3, D4.4, D5.3, D5.4, D6.3 and D6.4 at the end of the last 

year of the project. Again, a holistic vision will be offered through D2.9. 

A final version of this deliverable, D3.3, will be released in M36 of the project, which 

corresponds to December 2023. 

1.3 Structure of the document 

This document maintains the format of the previous deliverable, as it is composed of the same 

seven sections: 

• Section 1 includes the introduction to the document and the general content –such as 

document objectives, the relationship with other project activities, and clarifications 

addressing the outcome of the M18 review. 

• Sections 2 to 6 correspond to the different tasks in WP3, specifically: 

o Section 2 updates the status of the Artificial Intelligence platform (T3.1), 

including the main advances in the development of pipelines. 

o Section 3 includes the status of project’s Common data enablers and services 

(T3.2), focusing on the Data Space deployment and its integration with pilots. 

o Section 4 contains the latest advances in regards of the Geospatial enablers and 

services (T3.3). 

o Section 5 collects the details corresponding to the development of the 

Common application services (T3.4), including both those in which a better 

performance has been achieved and those that are still under development. 

o Section 6 compiles the progress regarding the architecture, communication 

standards and component development of the Mission Control Centre (T3.5). 

• Section 7 includes the milestones reached during the last months of the project –which 

are collected in this document– and the relationship with the work for the coming 

months. 

1.4 Addressing M18 review outcome 

The consortium has decided to include specific content to address the main aspects that were 

highlighted in the outcome of project’s M18 review and that need to be explicitly clarified. 

Given the standardized structure of the document, this specific supplemental subsection 

provides more flexibility to include explanations and maintains the ease of comparing with 

previous and future versions of the deliverable. 

The content in this subsection has been arranged in four blocks corresponding to the most 

signalled aspects to be improved or clarified in the project. The first block of content 

corresponds to the relationship of the platform with its definition of architecture, its 

implementation, and the integration of components. Then, specific content regarding the 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   16 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

project’s specialization in agriculture and how trustworthiness is being considered and 

addressed within the project is included. The last part of this subsection compiles platform’s 

components and clarifies their origin. This is, which components have been developed prior 

to the project, which are external (third-party software used in the platform), and which are 

new or have been tailored to meet the specific requirements of the project. 

1.4.1 Platform’s architecture, implementation, and components 

integration 

The FlexiGroBots’ platform architecture, as described in D2.3 –which outlines the final 

requirements and specifications of the platform–, serves as a reference for the 

implementation of the respective WP3 building blocks and provides guidance for the 

integration, execution, and validation activities of the three pilots in WP4, WP5, and WP6 

(refer to D2.3 for a complete specification including functional and non-functional 

requirements, and use cases). The aim of this subsection is to include an explicit link between 

the defined architecture in WP2 and the work done corresponding to each task in WP3. For 

this, the architecture diagram corresponding to the platform provided in D2.3 is also reused 

here (Figure 2), on which labels have been added specifying which task of package 3 

corresponds to the implementation of the different components defined in WP2: 

• T3.1 encompasses “a series of modules that offer an integrated solution, leveraging 

Machine Learning and Deep Learning techniques through Machine Learning 

Operations (MLOps) and Automatic Machine Learning (AutoML) paradigms, to extract 

value from the information collected from various devices, robots, and other 

components”. 

• T3.2 includes the corresponding tasks related to the “information management and 

exchange between multiple stakeholders in a secure and sovereign manner, in 

accordance with the principles of the Data Spaces concept and the International Data 

Spaces Association (IDSA). It also provides access to real-time or near real-time 

information and historical data”. 

• T3.3 incorporates the components to “processes drone and satellite remote sensing 

products, exposing the results through standard Open Geospatial Consortium (OGC) 

interfaces”. 

• T3.4 comprehends "off the shelf" services for general precision agriculture through an 

"AI as a Service (AIaaS)" approach”. 

• T3.5 involves the development of the “components to provide the solution with the 

capability to plan and execute complex missions that involve fleets of heterogeneous 

robots through a powerful Mission Control Centre (MCC)”. 

Platform’s components related to pilots (WP4-6) are also depicted in Figure 2. 

 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   17 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 
Figure 2 FlexiGroBots platform development depicted in D2.3, labelling the scope of the tasks in WP3

                      

                       

             

             

             

      

             

          

             

          

            

             

                

             

             

             

      

             

               

             

          

             

      

             

          

           

             

        

             

           

             

         

             

       

             

      

             

           

                                

             

    

             

                

             

      

         

             

                  

          

        

             

       

         

             

      

         

             

               

         

             

             

             

             

             

        

             

          

             

         

                      

             

          

    

             

               

      

          

             

    

             

      

             

     

             

           

          

             

             

               

             

               

             

                   

             

           

       

       

       

       

       

       

       

T3.3 T3.2 

T3.4 

T3.1 

T3.5 

WP4-6 

WP4-6 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   18 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

1.4.1.1 Platform components integration 

The consortium recognizes the importance of clarifying the integration status of the 

components that enlist the integrated platform. At this stage of the project (M24), as the 

development of the platform continues to progress, more information in this regard can be 

provided. This will not only help in overcoming the information gap indicated in the M18 

Review, but also in making it easier to populate the platform with solutions developed from 

the pilots, ensuring the smooth operation of the solution. In light of this, the effort of the last 

year of the project will be put on the integration and standardization of these crucial elements 

and their relationship to support the FlexiGroBots’ platform as a whole, with particular focus 

on the Data Space as its backbone and high-level standards for the AI assets. 

For the time being, section 3 includes a detailed explanation of the architecture defined to 

implement the integration of two important components of the platform, namely the AI 

subsystem and the Data Space. This combination will allow users of the AI subsystem 

(Kubeflow) to access the data catalogues provided in the Data Space (which could be used for 

model training, testing, etc.) in a unified, integrated and, secure way. The integration of the 

geospatial enablers and services and the Data Space is, at this stage of the project, still to be 

defined given the lack of compatibility between the components’ interfaces. More 

information on this integration will be reported later in the project. The integration of the 

MCC with the Data Space is something that has already been worked on in recent months in 

line with the definition of the platform architecture. More information can be found in 

sections 3 and 6. 

In addition to this, information regarding the integration of the common application services 

is included in the dedicated section 1.4.1.2 of this document. Moreover, further details 

regarding the integration with the AI marketplace (AI4EU) [2] and the AI-on-Demand (AIoD) 

platform [3] are included in section 2.3. 

1.4.1.2 AI features integration 

The deployment of common applications as inference services in a distributed manner is 

subject to the availability of HW resources in the platform’s Kubernetes cluster (see sections 

2.2.1 and 2.6 for more information) and the resources available at the edge. At this 

intermediate point in the project, work still needs to be done to finalise the definition of how 

the inference services will be distributed and hosted. 

The current state-of-the-art computer vision models demand a large amount of 

computational resources, especially GPUs, which are indispensable to be able to work with 

execution times that can be considered as real-time. Currently, there is only one GPU (model 

Nvidia Tesla T4) in the AI platform server, in addition to the computational capacity of the 

CPU. This HW is absolutely insufficient to simultaneously support several inference services. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   19 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Therefore, there are two possible alternatives: introduce many more HW resources to the 

cluster, which will most likely lead to exceeding the budget allocated to this type of resources 

in the project; or use the resources available in the cluster to respond to offline requests, that 

is, those that do not require an instant response, and study the use of hardware resources on 

the edge, such as laptops or other devices with high computing capacity, to process the images 

and videos of real-time applications. Both alternatives would rely on using a messaging broker, 

such as MQTT [4], to add an interface layer that allows launching requests and receiving 

responses in the same way regardless of the computing device where the inference service is 

deployed. This is still under testing and more details will be provided later in the project. 

1.4.2 Specialization on agriculture 

Regarding the lack of specialization of common applications towards agriculture pointed out 

by the reviewers in the M18 Review, actions are being taken to reverse this impression, and 

top priority will be given to the development of more specific applications. 

Several applications were labelled as too generic, of non-specific use in the context of 

agriculture, such as image anonymization, estimation of the position and distance of people 

close to UGVs, automatic generation of datasets, or detection of human actions. It is 

understandable to question the apparent priority given to these more generic applications, 

since they are the most advanced at M18. 

The main reason for this greater progress is that to a large extent these applications have been 

able to be implemented without the need for components resulting from the work carried out 

by the pilots, with the exception of small data sets to validate the algorithms. On the contrary, 

many of the specific applications require the integration of the models and pipelines 

developed in the context of the pilots, which has meant having to wait for the second half of 

the project to give margin to obtain results and to be able to proceed to focus on them. 

In any case, all the applications, both those already fully developed and those that have yet to 

evolve, meet a real need drawn from the project requirements, and provide added value in 

the context of agriculture. In the final paragraph of the description of the status of each of the 

tools –section 5 of this document– the resulting added value is reflected in each case.    

On the other hand, it is considered that in the same way that negative conclusions can be 

drawn about the lack of specialization of some of the applications, it is also possible to draw 

value from the fact that an application developed in the project can be extrapolated to other 

industries, and that therefore what is really interesting is to cover both the more generic and 

the more specific aspects. In response to this comment, the efforts available during the 

remaining months of the project will be focused on enhancing the specific functionalities 

planned for agriculture, such as the detection of insect pests in crops, weeds, or fruit diseases.  



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   20 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

1.4.3 The AI Platform and Trustworthy AI 

The definition of Trustworthiness used in FlexiGroBots follows the definition proposed by the 

EU High-Level Expert Group on AI (AI-HLEG) [5]. This means, that an AI is considered to be 

trustworthy when it is lawful, ethical, and robust. The AI-HLEG operationalises these three 

general principles in seven requirements regarding “(1) human agency and oversight, (2) 

technical robustness and safety, (3) privacy and data governance (4) transparency, (5) 

diversity, non-discrimination and fairness, (6) environmental and societal well-being and (7) 

accountability”. These requirements can be assessed with the Assessment List for Trustworthy 

AI (ALTAI) [6]. The FlexiGroBots project uses this corresponding ALTAI questionnaire as the 

basis for the internal assessment of trustworthy AI. Deliverable D2.6 provides comprehensive 

details on this internal assessment. This short section summarises the main components of 

this assessment that are linked specifically to the FlexiGroBots AI Platform (WP3). 

The trustworthy AI assessment in FlexiGroBots follows several steps: First, an initial round of 

interviews with the platform developers (and each pilot) was conducted in August and 

September 2021 based on the ALTAI. As it is stated in D2.6, ”the interviews were led by CEPS 

with technical and well as managerial members of the respective partners. This setup followed 

the recommendation that the ALTAI “is best completed involving a multidisciplinary team of 

people.” [6]. During these interviews, the group discussed and filled in each question of the 

ALTAI questionnaire. Based on the discussion and findings during the interviews, CEPS drafted 

a list of initial recommendations tailored to the platform (and each pilot). These 

recommendations were shared with all partners in November 2021 and partners had the 

opportunity to provide feedback. All partners involved decided to follow-up on specific 

recommendations and questions which came up during the initial assessment in more targeted 

follow-up interviews. The first follow-up interviews focused on questions related to data 

protection and privacy”. These interviews will continue in the second reporting period, for 

example with targeted interviews on safety-related questions. All resulting recommendations 

from the first half of the project are available in D2.6. 

In order to link the FlexiGroBots assessment of trustworthy AI to the AI-HLEG definition of AI, 

each recommendation was specifically mapped to at least one of the seven requirements for 

trustworthy AI. The full list of recommendations specifically for the platform are available in 

D2.6, chapter 5.2, table 6. Moreover, as a means of harmonising the FlexiGroBots approach 

to trustworthy AI, a similar structure was applied to the assessment of each pilot. 

Furthermore, regarding the aspect of lawfulness, the consortium partners have reviewed 

regulatory frameworks and private standards that are relevant to the project. Details on this 

review, e.g. on legal standard related to data protection, autonomous vehicles or AI, are 

available in D2.6, chapter 4. These legal reviews continue during the second half of the project 

and will focus on aspects such as the New Machinery Regulation, the AI Act, intellectual 

property, and contracting standards. Moreover, a targeted interview with the platform 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   21 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

developers was organised by CEPS, to discuss questions related to data protection for the 

platform. Lastly, the state of the art has been advanced in the assessment and monitoring of 

the Trustworthiness of AI, through the expansion of model cards for model reporting and data 

sheets for reporting data sets. The project builds upon the model cards standard from Mitchell 

et al. [7] and the datasheets standard from Gebru et al. [8] and adapts them to the specific 

context of autonomous robots and agriculture. The project created concrete templates for 

model cards and data sheets (see chapter 5.6 and 5.7 in D2.6), which will be filled in for each 

dataset and AI model developed in the project. These templates provide a concrete tool for 

standardising the reporting and monitoring of trustworthy AI standards in the project. Model 

cards and dataset datasheets corresponding to WP3 are included in Annex A. 

Furthermore, building upon these standards, the project has also started discussions with the 

AI4Europe platform for integrating aspects of these standards into the AI4Europe AI asset 

upload interface. 

1.4.4 Platform components inventory 

This last section of the document introduction includes a list of the components that make up 

the FlexiGroBots solution for the centralized platform. Only a list of the actual components is 

compiled here (see Table 1), so that it is possible to see at a glance what other modules or 

elements they are based on, and a very brief description of the work done in the project. 

Detailed information on each of these components –including a description of the added value 

by the project– can be found in the corresponding sections of the deliverable. So, refer to 

these for a detailed explanation. 

Component Base element Purpose Type Work done 
within the 
project 

AI Platform Kubeflow ML workflows 
implementation and 
inference services 

Third-party 
(OS) 

Deployment, 
configuration, 
and integration 

MinIO Data Lake and storage 

Data Space 
(DS) 

IDS-TestBed Deploy the Data Space Third-party 
(OS) 

Deployment ( 
adaptation to 
Kubernetes), 
configuration, 
and integration 

Integration 
module 

(DS + AI 
platform) 

Fast-API, Redis 
Database 

Integrate the AI 
subsystem using the DS 

Own Development 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   22 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Component Base element Purpose Type Work done 
within the 
project 

Data Cube Open Data Cube 
(ODC) 

Facilitate the 
management and 
access (via OGC APIs) to 
hundreds/thousands of 
satellite and UAV 
imagery scenes 

Third-party 
(OS) 

Deployment, 
configuration, 
and integration 

stac-
generator.py 

gdal-bin, 
python-numpy, 
boto3, shapely, 
rasterio, rio-
stac, pystac 

Python script for 
automatically 
generating the STAC 
metadata necessary for 
indexing and making 
aware the ODC of the 
new UAV datasets as 
they are available 

Own Development 
from scratch 

Mapping 
Service 

MapServer Offer via standard OGC 
APIs access to the 
botrytis data (in vector-
based or map format) 
extracted from the 
collected datasets in 
the Spanish pilot 

Third-party 
(OS) 

Deployment, 
configuration, 
and integration 

Postgres+Postgis Geospatial database 
used for the storage of 
the botrytis data 

Third-party 
(OS) 

SLAM Zed2i stereocam 3D positional tracking 
and mapping 

Third-party 
(OS) 

Integration and 
testing of 
commercial 
device/SW 

People 
Detection 
Localization 
and Tracking 

Detic Object/people 
detection 

Third-party 
(OS) with 
own 
modules 

Pipeline 
development 
(component 
integration) 

Clip + deepSort Zero-shot multi-object 
tracker 

DPT Depth estimation 

People Action 
Recognition 

mmaction2 Action sequence 
recognition 

Third-party 
(OS) 

Component 
integration and 
testing 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   23 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Component Base element Purpose Type Work done 
within the 
project 

Moving 
Objects 
Detection 

TPH-Yolov5 Tractor detection Own Model training 
& pipeline 
development 

Clip + deepSort Zero-shot multi-object 
tracker 

Third-party 
(OS) 

Pipeline 
development 
(component 
integration) 

Orthomosaic 
Assessment 
Tool 

OpenDroneMap Orthomosaics + DTM + 
DSM 

Third-party 
(OS) with 
own 
modules 

Pipeline 
development 
(component 
integration) 

Anonymization 
Tool 

DeepPrivacy Face detection + face 
generation GAN 

Third-party 
(OS) 

Component 
integration and 
testing 

Automatic 
Dataset 
Generator 
Tool 

clipRetrival + 
img2dataset 

Raw image data 
collector 

Third-party 
(OS) with 
own 
modules 

Pipeline 
development 
(component 
integration) 

Detic Labelling zero-shot 

fiftyone Dataset visualization 

Fruit Disease 
Detection 

Detic Fruit detection and 
segmentation 

Third-party 
(OS) with 
own 
modules 

Pipeline 
development 
(component 
integration) 

Pest Detection Detic Insects and traps 
detection and 
segmentation 

Third-party 
(OS) with 
own 
modules 

Pipeline 
development 
(component 
integration) 

Weed 
Detection 

Detic Weeds detection and 
segmentation 

Third-party 
(OS) with 
own 
modules 

Pipeline 
development 
(component 
integration) 

MCC Mission 
workflow 
planner 

Mission workflow 
planning 

Own SW 
specification 
and 
development 

Mission 
workflow 
controller 

Mission workflow 
control 

Own SW 
specification 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   24 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Component Base element Purpose Type Work done 
within the 
project 

and 
development 

Mission reporter Mission report creation Own SW 
specification 
and 
development 

Mission 
repository 

Storage for mission 
descriptions 

Third-party 
(OS) 

Use of existing 
file system 

Mission 
management 
GUI 

User interface to 
mission workflow 
management 

Own Development 

Data space 
interface 

Interface to Agriculture 
data space 

Third-party 
(OS) with 
own 
extensions 

IDSA connector 
extended 

Fleet controller Sending commands to 
robots in the fleet 

Third-party 
(OS) with 
own 
extensions 

Extension to 
QGC software 

Fleet supervisor Visualisation of robots’ 
location and status at 
the field. 

Third-party 
(OS) with 
own 
extensions 

Extended use of 
QGC 

MQTT broker Transfer of MQTT 
messages between 
robots and fleet 
controller and 
supervisor 

Third-party 
(OS) 

Use of OS 
broker 

MCC 
communication 

MCC interfaces to 
robots and other 
components 

Own Development 

Robot task 
planner 

Robot route planning Own Development 

Table 1 Summary of the building blocks that compose the FlexiGroBots platform 

  



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   25 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

2 Artificial Intelligence platform 

The Artificial Intelligence (AI) platform is the core element of the FlexiGroBots platform that 

facilitates image processing and recognition, through different deep learning (DL) and 

machine learning (ML) models. Its AutoML functionality allows users to achieve high 

performance of image segmentation and classification. 

2.1 Implemented functionalities  

During the previous reporting period, we advanced from having implemented individual 

components of the platform, to having the final prototype with fully functioning elements and 

communications between them. The results of the project in terms of data and models will be 

shared through the Agricultural Data Spaces (ADS) and the AI on-demand platform resulting 

from the AI4EU project. The main results achieved in the previous reporting period are the 

following: 

● Having allocated appropriate storage and computing resources, the user can follow 

two pipelines shown in Figure 3. The training pipeline (green box) is intended for 

building optimal deep learning (DL) models based on the training data and labelled 

images, while the test pipeline (red box) is intended for executing DL on input images 

during regular operation of the platform within pilot use-cases. 

 
Figure 3 AutoML procedure with training and testing pipelines 

● The toolbox has been enriched with additional libraries and packages so that it now 

includes deep learning libraries (PyTorch being the primary one), standard Python 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   26 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

libraries (numpy, pandas), machine learning pipelines (scikit-learn), image processing 

libraries (scikit-image, OpenCV) and processing of geospatial data (gdal) 

● The drafted workflow has been implemented and now encompasses the whole life-

cycle of ML models. MinIO is used for import/export of data/models, standard image 

processing techniques are used for pre- and post-processing, different DL architectures 

can be explored along with a number of different hyperparameters and this process is 

governed by the AutoML functionality. 

● MinIO was implemented as a highly optimised data storage that facilitates integration 

of data from all Pilots. An HTTP connector has been implemented within MinIO as an 

edge gateway for seamless communication with Pilots’ Farm Management Systems 

(FMS), and more generally with ADS. MinIO, however, can also accept data from other 

sources, such as user’s storage or cloud drive, using HTTP or other protocols. 

● The AutoML functionality covers different neural network architectures (UNet, 

UNet++ etc.)  and explores different hyperparameters (model, learning rate (LR), LR 

Scheduler, Lambda, step, batch size, number of epochs). Model performance is 

evaluated based on introduced metrics which depend on the tasks (e.g., Intersection 

over Union (IoU)). The result of the hyperparameter optimisation is the best-

performing model itself, coupled with an xml file with the list of final properties of the 

model (Figure 4). 

 
Figure 4 After an experiment is finished, results are stored inside an XML file with hyperparameters 

and results for row detection 

● A dedicated GitHub repository was set up for the trained AI models for easy sharing 

of implemented models between the pilots and use-cases. We developed a generic 

Docker container for these models and an example can be found on the link in Section 

2.7. It offers multi-platform support (x86, ARM, GPU, TPU) for the specific hardware 

for easy scalability over different platforms and use-cases. 

● Access to the AI platform has been made available through: Jupyter Notebooks, 

Software Development Kits (SDKs) and/or Command Line Interfaces (CLI), while the 

results are accessible through TensorBoard integrated in the Kubeflow [9] (Figure 5). 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   27 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

This feature provides detailed information about the training loss, performance 

metrics for different configurations of hyperparameters through the epochs. It can be 

also very useful for model/training analysis, selection of the best performing models, 

and for redefining a new range of values for hyperparameters. 

 
Figure 5 Training results are accessible by TensorBoard 

MinIO, KubeFlow, TensorBoard and similar tools used in the project are developed by different 

software companies and communities. The main contribution of FlexiGroBots is in the domain 

of system integration. The server has been set up from scratch and the components installed, 

connected, and streamlined to cover the whole ML lifecycle from data to actionable insights. 

Regarding the models on the platform, we used state-of-the-art models and fine-tuned them 

to fit the input format of UAV images and the output format for the subsequent UGV 

operations. 

In addition, the AI platform will be connected with other platform’s components through the 

Data Space. This connection will be explained in more detail in section 3 (Common data 

services), where the modules linking to the AI platform will be described. 

2.2 Requirements 

2.2.1 Technical requirements 

2.2.1.1 MinIO 

MinIO can be defined as an open-source storage server, this solution has been deployed using 

a Kubernetes cluster (v1.21.9) on a virtual machine with the next hardware characteristics: 

• Intel Xeon Processor (CascadeLake) 6 CPUs 

• 502 GB storage 

• 12 GB RAM memory 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   28 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

2.2.1.2 Kubeflow 

As stated in D3.1, Kubeflow [9] relies on Kubernetes for its deployment. The cluster in use has 

been extended to meet the computing needs of the project and also to include a GPU. It 

currently consists of the following nodes: 

• Master: 

o CPU: 12 cores 

o RAM: 32GB 

o Disk: 4TB 

o Operating system: Ubuntu 20.04.2 LTS 

• Worker: 

o CPU: 64 cores 

o RAM: 124GB 

o Disk: 890GB 

o GPU: Tesla T4 

o Operating system: Ubuntu 20.04 LTS 

2.2.2 Functional requirements 

Not relevant. 

2.3 Data models 

The AI platform has been developed to be agnostic towards the type of the data, as different 

pilots will have different UAV/UGV images (RGB, multispectral, hyperspectral…) and possibly 

additional data (e.g., shapefiles). Data is fetched from external sources (ADS, FMS, user 

storage…) through HTTP and placed on MinIO, from where it continues its path to Kubeflow. 

The integration of the AI4EU marketplace [2] and the AI-on-Demand platform (AIoD) [3] is a 

mandatory aspect of the project that still requires implementation. Despite this, additional 

information beyond what is included in D3.1 can now be provided. These platforms are 

interconnected, enabling users to upload a diverse range of AI assets, such as datasets, ML 

models, Jupyter Notebooks, repositories, and Docker containers. In detail, the AI4EU 

marketplace requires Docker containers to include Protobuf1 [10] format for use on the 

platform. The adoption of this format in the AI subsystem will require specific modifications 

and adaptations of the containers in use because Kubeflow does not use this standard for the 

 
1 Protobuf , short for Protocol Buffers, is a language-agnostic data serialization format developed by Google that 
permits defining a data schema in a simple language and utilizing that schema to serialize and deserialize 
structured data in a compact binary format. It is frequently utilized for inter-process communication, data 
storage, and network communication, particularly in high-performance applications where efficiency and data 
size are critical. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   29 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

underlying containers supporting pipeline components or inference services. As a result, the 

consortium must prudently assess the investment required for this adaptation. In contrast, 

the AIoD platform is more flexible, providing users with greater freedom. It permits uploading 

almost any type of AI asset in any format, creating a more open and adaptable environment 

for collaboration, and sharing. 

As a preliminary plan, FlexiGroBots consortium intends to integrate its assets in the AIoD 

marketplace. This integration path, though requiring further clarification, will involve 

submitting AI assets that comprise the pilot applications, considering any interoperability or 

compatibility components that the platform imposes. The most established algorithms for 

image detection (agricultural vehicles from UAV footage, blueberries, and grapes) and the 

orthomosaic tool will be the first ones to be uploaded to the platform. 

2.4 Application Programming Interfaces (APIs) 

As stated in D3.1, “Kubeflow provides a Python SDK to manage and execute ML pipelines. It 

also  provides a RESTful API and supports main ML libraries like TensorFlow, PyTorch or scikit-

learn”. There are no updates in this regard. 

MinIO [11] offers an API that can be accessed through the use of different programming 

languages such as Python, JavaScript, and C#, allowing interaction with the data lake in a more 

versatile way using scripts. For this project, a small library has been designed using Python 

scripts that allow uploading, downloading and representation of buckets [12]. With this 

library, it is managed MinIO from creating buckets to uploading and downloading data. In 

addition, it is possible to set up the administration of the data lake with different sorts of 

permissions. All MinIO instructions are on the official web page of the data lake. 

2.5 Graphical User Interfaces (GUIs) 

The ML pipeline can be executed through Kubeflow’s GUI. Screenshots in Figure 6 and Figure 

7 show how experiment runs are initiated and how the boundaries of hyperparameters are 

defined. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   30 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 
Figure 6 Initiating an experiment run through Kubeflow GUI 

 
Figure 7 Definition of hyperparameters within the training pipeline through Kubeflow GUI 

Otherwise, MinIO offers a GUI that allows working with the data lake in a more visual and 

simple way. This GUI is prepared to work using the browser, in addition there is a manage 

system used to difference the permissions of each user. Figure 8 shows the login web page to 

MinIO. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   31 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 
Figure 8 MinIO’s log in web interface 

Figure 9 shows the aspect of the data lake, from this GUI it is possible to configure the user 

permission, the buckets, notifications, lambda functions and monitoring. 

 
Figure 9 MinIO main interface 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   32 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

2.6 Installation 

The installation of Kubeflow was done on ATOS’s Kubernetes cluster based on the available 

Kubernetes manifests2 available for bare-metal deployments. The additional steps required to 

achieve a fully working deployment are included in project’s repository3. Among the 

milestones achieved, the following stand out: 

• Enabling of a centralized authentication system based on Dex4 and connected to 

FlexiGroBots organization in GitHub. The users belonging to a specific team within the 

organization will have access to the Kubeflow instance. 

• Deployment of Nvidia’s GPU Operator5 to manage workloads making use of GPU in 

Kubernetes. Additionally, time-slicing configuration for oversubscribing GPUs in 

Kubernetes6 was applied. This enables multiple workloads –which might belong to one 

or multiple users– to use the same GPU concurrently (GPU oversubscribing is disabled 

by default in Kubernetes). 

We also installed a wide variety of Python libraries for image processing and deep/machine 

learning (PyTorch, scikit-learn, scikit-image…), as well as auxiliary libraries for data handling. 

The server was configured to support model training/testing/execution on GPU servers. 

MinIO offers several ways to install it, from dockers and Linux to Kubernetes. For FlexiGroBots, 

Kubernetes has been the established way of MinIO; this is due to the kind of project 

architecture. The easy option to install MinIO is launching a set of manifests. These manifests 

are public in the project repository [13]. In addition, an URL has been associated with the data 

lake to make it public to the project's users. Finally, it has been configured the Kubernetes 

cluster to access MinIO from any browser using a public URL: https://minio.flexigrobots-

h2020.eu 

2.7 Prototype availability within FlexiGroBots 

• MinIO is available at https://minio.flexigrobots-h2020.eu 

• Kubeflow is available in https://kubeflow.flexigrobots-h2020 

• As an example, a Pilot 3 AI model developed through the AI platform was wrapped using 

the Generic Container and is available at: https://github.com/FlexiGroBots-H2020/AI-

platform/tree/master/kubeflow/blueberry_row_detection  

 
2 https://github.com/kubeflow/manifests 
3 https://github.com/FlexiGroBots-H2020/AI-platform/blob/master/kubeflow/README.md 
4 https://dexidp.io/ 
5 https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/overview.html 
6 https://developer.nvidia.com/blog/improving-gpu-utilization-in-kubernetes/ 

https://minio.flexigrobots-h2020.eu/
https://minio.flexigrobots-h2020.eu/
https://minio.flexigrobots-h2020.eu/
https://kubeflow.flexigrobots-h2020/
https://github.com/FlexiGroBots-H2020/AI-platform/tree/master/kubeflow/blueberry_row_detection
https://github.com/FlexiGroBots-H2020/AI-platform/tree/master/kubeflow/blueberry_row_detection


 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   33 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

2.8 Release planning 

As of 12/2022 we can confirm that the final prototype of the platform has been developed. 
AutoML, which is the core functionality of the system, has been implemented and tested. 
However, there are some ongoing tasks, in which there was a slight lag in the development, 
due to the fact that the architecture based on Kubeflow and MinIO proved to be less stable 
than initially envisaged, and which took additional efforts for setting up. However, this lag will 
not affect project implementation as the ongoing tasks will be finished during the first quarter 
of 2023, well before the next blueberry/rapeseed/vine growing season. 

• 01/2022: 
o Integration of AI platform into the ADS. 
o Integration of AI platform with systems from Pilots 2 and 3. 

• 02/2022: 
o Interoperability with AI4EU. 
o Integration of the AI Platform with pilots’ systems. 

• 03/2022: 
o Additional features, feedback from pilots. 
o Final version of the platform 

 

User story ID User story Priority Story 
points 

AI_US_01 Development of an IDSA connector for MinIO High 3 

AI_US_02 Integration of Kubeflow with AI4EU for re-using and 
publication of artefacts 

High 5 

AI_US_03 Testing of AutoML operators High 1 

AI_US_04 Integration of models for common application services Medium 7 

AI_US_05 Integration of models for pilot 1 High 8 

AI_US_06 Integration of models for pilot 2 High 8 

AI_US_07 Integration of models for pilot 3 High 8 

AI_US_08 Optimisation for multiple architectures including ARM 
processors 

Medium 13 

AI_US_09 Integration of codecarbon library Low 2 

AI_US_10 Performance monitoring and retraining functionality Medium 21 

Table 2 User stories for the AI platform  



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   34 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

3 Common data services 

As mentioned in the previous D3.1 “Common data services” [14], this work package aims to 

guarantee equal opportunities and trust in data sharing. Thence, Atos has deployed a IDSA 

data space. The main goals of IDSA are to preserve security and data sovereignty in the data 

exchanged; for this reason, Atos has designed all needed manifests to deploy an IDSA DS like 

a production-ready solution. 

IDSA published a repository [15] with a real TestBed; this is an example of a real DS. The design 

of this TestBed is oriented to use in local/development environments; for this reason, and the 

project requirements, it has been compulsory to adapt the TestBed from a local environment 

to a production environment. 

Migration has been switched from the Docker Compose technology to a technology-oriented 

cluster, Kubernetes [16]. The aim is to provide an Open Source and production-ready solution 

to work in a real environment. 

Kubernetes uses a set of files named manifests that define the behaviour of each component. 

For this reason, in this second part of the project, all manifests have been developed to deploy 

the system in a production Kubernetes cluster. In addition, these files have been configured 

to work in a cloud cluster (Rancher cluster) and allowing to access the DS from the Internet. 

In addition, another repository [17] has been created within the FlexiGroBots organization 

where the steps for deploying this system are detailed. Due to the IDSA policy, as explained in 

section IDS-G from IDSA official repository [18] where the steps for the deployment of this 

system are detailed, “IDS-G is the point of truth for specifications of the IDS and its components 

in the IDS GitHub page. It is also public for everyone and contains the approved specifications 

that were confirmed by the IDS Technical Steering Committee (IDS-TSC) and the IDSA Working 

Groups. IDS-G publishes quarterly releases with new approvals by the Working Groups and the 

TSC”. 

As mentioned in the previous section, an integration architecture has been designed to join 

the AI platform with the rest of the parts of the project. This will allow authorised users to use 

the AI platform and request data from the consortium companies to train their models. This 

integration will be managed through the Data Space, using the DS connectors as a gate to 

access the private dataset. 

The last point will be the Data Space integration with the Mission Control Centre. Currently, 

the Mission Control Centre uses a Data Space deployed in a local machine to perform tests 

and work in parallel with the rest of the consortium parts. But for the last stage of the project, 

the integration of both parts will be a high priority. 

https://github.com/International-Data-Spaces-Association/IDS-testbed
https://kubernetes.io/es/docs/tasks/tools/
https://github.com/FlexiGroBots-H2020/Data-Space
https://github.com/FlexiGroBots-H2020/Data-Space


 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   35 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

3.1 Implemented functionalities 

The implemented functionalities are summarized below: 

• In order to evaluate that the system works correctly, it has been evaluated that the 

functionalities of the DS do not change independently of the technology used, being able 

to affirm that with Kubernetes, it works in the same way as with Docker compose but in a 

production environment. Figure 10 shows this migration and how the architecture has 

been adapted to the project. The left block is the IDS-TestBed deployed using Docker-

Compose; this deployment runs in a local machine environment; because of this, external 

connectors cannot access to the DS. On the other hand, the right block represents the 

same IDS-TestBed but running Kubernetes technology. The external elements can connect 

to the DS and exchange data in this case. 

 
Figure 10 Migration from Docker Compose to Kubernetes 

• The DS cluster is reachable using request (POST, GET, …) or another type of technology 

such as a browser or a Swagger [19]. 

• Also, the DS components have been deployed in the same Virtual Machine where the 

MinIO data lake is located. 

• Each part of the cluster has been deployed using Open-Source technology (Open-Source 

technologies). 

• The solution developed in the project using Kubernetes has been updated to the official 

IDSA repository because of it was not available previously. 

• The components with older versions in the TestBed have been updated to the last versions 

repairing bugs and connection problems. Among the new functionalities, the connectors 

have been updated to use the latest release developed by Fraunhofer (V8.0.2); Figure 11 

shows the architecture of the latest version of the connector. 

https://swagger.io/


 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   36 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 

Figure 11 Data Space connector architecture. Source "https://github.com/International-Data-Spaces-
Association/DataspaceConnector/blob/main/docs/assets/images/container-overview.jpg" 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   37 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

• The connections between the rest of the pilots and the data lake have been completed. 

Thus, two companies’ pilots can exchange data and datasets or upload/download the 

dataset from MinIO data lake. Figure 12 represents this ecosystem where the core 

components of the DS is in the centre and the MinIO data lake is on the left side, and 

finally, the pilot companies are on the right side. 

 

Figure 12 Data Space connected with the pilots and data lake 

• The architecture shown in the Figure 13 has been designed to communicate the AI 

architecture with the DS. This architecture is characterised for using a REST-API based on 

Flask technology to create a logic communication between the AI subsystem and the rest 

of the elements in the platform. In addition, the REST-API will have access to a database 

with user credentials to ensure the security of the system. This database will be based on 

a structured engine, in particular on Redis [20]. 

 
Figure 13 Communication architecture for the integration of the Data Space and the AI subsystem 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   38 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

3.2 Requirements 

3.2.1 Technical requirements 

To launch successfully an IDSA’s DS is needed a set of HW and SW requirements. In this project 

it has been used a Virtual Machine with the next characteristics: 

• Intel Xeon Processor (CascadeLake) 6 CPUs, 64bit quad-core. 

• 512 GB storage. 

• 12 GB RAM. 

• Ubuntu 20.04. 

Regarding Redis [20] database, the minimum requirements according to the official web page 

are: 

• Redis servers need 3 or 4 vCPUs each (>2.6 Ghz) and 8GB of RAM, configured as a Redis 

Cluster (with high availability). 

• High-bandwidth network interface card (1Gbps recommended). 

• 10GB disk (to store the operating system, logs, etc.). 

Regarding Flask [21] the dependencies and requirements specified in the official web page 

are: 

• WSGI is a standard Python interface to connect severs and applications. 

• Flask uses Jinja [22], this template language is used to render application in web page. 

• Itsdangerous [23] is a tool to sign the data of a secure way. This tool is used for Flask 

to protect their sessions. 

3.2.2 Functional requirements 

The main aim is to exchange data between the consortium companies; in order to achieve 

this, firstly, the connectors have been deployed in the companies' infrastructure (cloud 

machines, servers, etc.). After that, the connectors must reach the DS deployed in the cloud; 

for this reason, it is essential to correctly configure the certificates and use the correct version 

of the connector (V.8.0.2). 

The DS‘s Omejdn and the Meta Data Broker have to be exposed to the cloud, the Omejdn is 

the system that forms the dynamic attribute provisioning system (DAPS) intended to assure 

certain attributes to connectors. Therefore, third parties need not rely on the latter as long as 

they trust the assertions of the DAPS. And the Metadata Broker, which is a registry of self-

description documents of the IDS connector.  this is achieved using a Reverse proxy, in the 

case of this project and with the open-source mentality it has been deployed Traefik [24]. This 

Reverse proxy includes a dashboard that monitors the network state of the DS. 

https://palletsprojects.com/p/jinja/
https://traefik.io/


 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   39 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Finally, the access to the DS has been encrypted using Let's Encrypt, which is based on the use 

of Transport Layer Security (TLS). TLS is a protocol that, as stated in [25], “provides security 

and encrypted communication between computer networks. It is the standard in multiple 

fields, such as HTTPS web pages, SMTP systems, or VoIP messaging; being the most used 

security protocol for the public”. The communication with the AI subsystem through the DS 

will be carried out with an API and a database. The API will use Flask, there are two main 

reasons to use this technology. The first one, Flask is an open-source technology and the 

requirements SW and HW are lower than other kind of APIs. And the second one, Flask is more 

flexible and customizable than other API-tools. The main aim is to link this API with three 

components, the AI platform explained in the previous section, with the DS and with a user 

database. 

The database will be developed using a Redis [20] Database. The main reason to choose this 

database is for its in-memory store. Redis persists data to disk to ensure the durability of the 

data. Redis can restore from the disk whether there is a corruption or crash problem. Apart 

from this kind of persistence, other types of persistence methods can be adjusted for the 

application. 

In order to integrate every component in a same technology, the API-REST and the User 

database will be integrated in the cluster where the DS is deployed. 

3.3 Data models 

FlexiGroBots project uses the information model of IDSA described in [26], this document 

explains in more detail the format and the sort of message. This format message is used for 

connectors to exchange data, Figure 14 is shown the structure of this type of message. 

curl --location --request POST 'https://connectora.platform.flexigrobots-

h2020.eu/api/artifacts' \ 
--header 'Authorization: Basic XXXXX' \ 
--header 'Content-Type: application/json' \ 
--data-raw '{ 
    "title": "Example artifact with weather data", 
    "description": "This is an for the D3.2", 
    "value": "Insert data",  
    "automatedDownload": true 
}'  

Figure 14 IDSA data model 

To send data through this connector is used the value field in the artifact message. Hence, it 

has been used as Base64 binary-to-text encoding. This codification allows two things; the first 

one homogenizes the different data in the same language; for example, if an image is going to 

be sent, with Base64 encoding, the obtained data model is the same that in list values. And 

second, the Base64 encoding results provide an easy way to send information through API. 

The encoded data is attached to a POST request and sends the message through the 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   40 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

connector's API-REST. This allows to keep aspects described in D3.1 [14], such as supporting 

the description, publication and identification of data products and reusable data processing 

software (both referred to by the IDS-RAM as "Digital Resources" or simply "Resources"). 

Despite being executed in another type of architecture, such as Kubernetes, the method of 

sending and registering connectors is the same as when using Docker compose technology. 

Figure 15 shows a real value Base64 encoding. This encoding allows passing the information 

bits to plain text, and the message used is a document quickly sent through a request. 

 

Figure 15 Example of Base64 encoding 

3.4 Application Programming Interfaces (APIs) 

The API connector is the same as the one stated in D3.1; the differences regarding the previous 

deliverable are two: the first, the connector has been updated at the last version (v8.0.2), 

which allows fixing bugs and connectivity problems. The second one, connectors have been 

exposed to the cloud; this modification allows accessing the connector using an externa URL. 

Figure 16 shows the connector's new version and the URL to access the API. It is worth noting 

that the API specifications are the same as stated in the IDSA connector description [27]. 

 
Figure 16: Dataspace Connector version 8.0.2 

3.5 Graphical User Interfaces (GUIs) 

Not relevant for common data services. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   41 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

3.6 Installation 

The steps to install the DS have been modified due to the migration from Docker to 

Kubernetes. 

This section clarifies the order to install each DS component for the FlexiGroBots project. 

1. Install Kubernetes version (1.29) or higher. 

2. Install Kubectl [28]. 

3. Create a Kubernetes cluster to work on or join to the one assigned to the project. 

4. Create a namespace to deploy the Data Space in a clean environment. 

5. Launch the corresponding manifests inside the created namespace and assign the URLs 

to the IngressRoute that corresponds to the public IP of the machine on which the 

cluster is running. 

6. Test the request list attached in the FlexiGroBots repository [29] and make sure the 

connectors are registered in the DS. 

In order to install the API-REST and the Redis database a new namespace will be created in 

the K8S cluster. The steps to deploy them will be the same as those used for the other 

components: using the “apply” command in Kubectl to deploy the manifests in the cluster. 

Finally, it is recommendable to connect an external connector, for this purpose it is important 

to have the DS’s certificates (in this project the certificates are generated for IDSA but in the 

future Atos will develop the CA). With these certificates it is possible to test the connector 

properly. 

3.7 Prototype availability within FlexiGroBots 

The prototype is formed by a set the systems interconnected that all of them form a DS in a 

real production environment: 

• Firstly, the system is deployed with Kubernetes technology. Thus, the DS is running in 

a real production environment.  

• The Kubernetes cluster has been deployed in the cloud, in a Rancher cluster. This 

means that any customer with a connector could register and interact with the DS. 

• Each of the pilots have deployed a connector including certificates, allowing to connect 

their systems to the DS.  

• Two Python libraries have been developed to work with the IDS connectors in an easier 

way and to connect this connector with the MinIO data lake. 

• Currently, development tasks for the integration of the AI subsystem with the DS are 

being carried out. Also, these new components will be deployed in the same 

Kubernetes cluster where the DS is deployed on. 

https://kubernetes.io/es/docs/tasks/tools/
https://github.com/FlexiGroBots-H2020/Data-Space/blob/main/k8s/TestbedPreconfigurationK8s.postman_collection.json


 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   42 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

• Finally, the last step will be to integrate the Mission Control Centre’s Data Space –

which has been used for testing purposes– in the Data Space of the platform and use 

the DS as a link among all the platform’s components. 

3.8 Release planning 

According to the release planning described in D3.1, User Stories ADS_US_10, ADS_US_05, 

ADS_US_06, ADS_US_07, ADS_US_11, ADS_US_04 have been completed. ADS_US_08, 

ADS_US_09, ADS_US_12, ADS_US_13, ADS_US_14, ADS_US_15 are currently in development. 

User story ID User story Priority Story 
points 

ADS_US_12 Implementation of connector for geospatial services High 2 

ADS_US_13 Integration and communication of the different 
pilots using DS 

High 3 

ADS_US_14 Final and tested prototypes of the communication of 
the different pilots via the DS 

High 13 

ADS_US_08 Development of DAPS component Medium 8 

ADS_US_09 Development of CA component Low 13 

ADS_US_10 Integrate the MCC in the DS High 8 

ADS_US_11 Deploy the module to communicate the DS with the 
AI platform 

High 13 

ADS_US_15 Keep IDS-components updated with the latest 
releases 

Low 3 

Table 3 User stories for the ADS 

  



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   43 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

4 Geospatial enablers and services 

As described in the previous version of this deliverable (D3.1), “the aim of the FlexiGroBots 

geospatial enablers and services task is to provide a set of general-purpose services and 

features that facilitate the access, visualization, and processing of geospatial datasets 

necessary for performing the daily activities on the farm”. 

To that end, the main priority of this task is to provide key geospatial components planned for 

deployment within FlexiGroBots agricultural data space, being at its core “the provision of a 

data cube for facilitating for the FlexiGroBots pilots the management and access to the 

Copernicus satellite Sentinel 2 imagery and the drones’ orthoimagery (and derived products)”. 

This updated version of the report describes the new implemented functionalities supporting 

the indexing, access and visualization of the datasets produced by the drones using the Open 

Data Cube (ODC). 

4.1 Implemented functionalities  

The provision and deployment of the data cube service –by means of the open-source 

implementation Open Data Cube (ODC)– has been the priority for the first release of the 

FlexiGroBots platform as it is the base for developing other (geospatial and/or AI-based) 

services for some of the pilots. This was already addressed in deliverable D3.1, and therefore, 

here it is being reported the progress and new functionalities implemented so far. 

The setup and deployment comprehended on the one hand the tools provided by ODC (that 

is, a) Command Line Tools; b) Open Data Cube Explorer; c) Web User Interface (UI); d) Jupyter 

Notebooks Hub; and e) Open Geospatial Consortium (OGC) Web Services), and on the other 

hand, the (indexing of the) Sentinel 2 data necessary for the pilots’ areas. 

In this new version of the deliverable, it is described the indexing and offering of the pilot UAV 

(Unmanned Aerial Vehicle) data via the ODC. To that end, a Python script (i.e., stac-

generator.py) has been implemented for automatically generating the STAC (Spatio-

Temporal Assets Catalogue) metadata necessary for indexing and making aware the ODC of 

the new UAV datasets as they are available (in the case of the Sentinel 2 datasets provided by 

Amazon Web Services (AWS), the STAC metadata is already there to be indexed by the ODC). 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   44 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

4.2 Requirements 

4.2.1 Technical requirements 

The deployment and installation of the Python script (“stac-generator.py”)7 is done in the 

same VM where the ODC is running, therefore no additional resources are needed (please, 

refer to D3.1 for the technical requirements of the ODC). The script, however, has the 

following libraries dependencies that must be installed in the system: 

• gdal-bin 

• python-numpy 

• boto3 

• shapely 

• rasterio 

• rio-stac 

• pystac[validation] 

In addition, the script must have access to the location where the UAV data is stored (e.g., in 

the case of the Spanish pilot, the UAV imagery is stored in a network shared folder mounted 

in the VM (Virtual Machine) under “/data”.). 

The script is, in principle, able to generate STAC metadata for any geospatial dataset 

supported by GDAL8 library, although for the case of FlexiGroBots, it is focused on raster ortho-

imagery provided in GeoTiff9 format. 

4.2.2 Functional requirements 

In order to generate the STAC metadata and index the UAV’s imagery (as well as its derived 

outputs), they must be organized in a common folder structure and file naming convention 

(see Figure 17), so the Python script can find and handle them. 

 
7 available in https://github.com/FlexiGroBots-H2020/Geospatial-Enablers-Spanish-
Pilot/blob/master/datacube/stac-generator.py 
8 https://gdal.org/ 
9 https://en.wikipedia.org/wiki/GeoTIFF 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   45 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 
Figure 17 Folder structure and file names of the different products for various UAV flights in the Spanish pilot 

area 

With that, the script can generate the different JSON files generated according to the STAC 

standard specification. That is: 

- A Catalog that provides links to 

Items or to other Catalogs. 

- A Collection (==product) that 

shares most fields with a Catalog, 

but has a few additional fields like 

license, extent, providers, 

keywords, and summaries. 

- An Item that represents a single 

spatiotemporal asset, or a unit of 

data and metadata that contains 

information about the Earth 

captured at a certain space and 

time. 

- An Asset that represents the 

specific metadata of a file (e.g., 

20210917T163000-uav-

orthomosaic-b01-blue.tif) (note: an 

Item can be composed of multiple 

assets). 

Figure 18 shows the relation of the python 

“stac-generator.py” script within the 

context of the ODC components, and how 

it supports the “odc-indexer” container to 

index the UAV’s EO datasets by preparing 

their associated STAC metadata. 

 

 

 

 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   46 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 
Figure 18: Relation of "stac-generator" Python script with the ODC components 

4.3 Data models 

The generation and indexing of the UAV datasets comprise: 

• The UAV imagery and derived products, provided in GeoTIFF format 

• The STAC JSON files (see previous section), generated out of the UAV imagery  

• The UAV products definition, which is a YAML file containing the definition of each of 

the UAV outputs and derived products (one YAML file per product). This file is then 

used for registering the products in the ODC and linking it with the STAC JSON files. 

The following are examples of the STAC JSON files produced by the Python script: 

catalog.json 

{ 

  "type": "Catalog", 

  "id": "flexigrobots-pilot1-root-catalog", 

  "stac_version": "1.0.0", 

  "description": "FlexiGroBots STAC Catalog for the Spanish Pilot (Pilot #1)", 

  "links": [ 

    { 

      "rel": "root", 

      "href": "http://flexi-datacube.westeurope.cloudapp.azure.com/nginx/stac/catalog.json", 

      "type": "application/json", 

      "title": "FlexiGroBots STAC Catalog for the Spanish Pilot (Pilot #1)" 

    }, 

    { 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   47 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

      "rel": "child", 

      "href": "http://flexi-datacube.westeurope.cloudapp.azure.com/nginx/stac/uav_orthomosaic/collection.json", 

      "type": "application/json", 

      "title": "Orthomosaics collected from regular UAV flights" 

    }, 

    { 

      "rel": "child", 

      "href": "http://flexi-datacube.westeurope.cloudapp.azure.com/nginx/stac/uav_orthomosaic_cog/collection.json", 

      "type": "application/json", 

      "title": "Orthomosaics collected from regular UAV flights (COG version)" 

    }, 

    { 

      "rel": "child", 

      "href": "http://flexi-datacube.westeurope.cloudapp.azure.com/nginx/stac/uav_ndvi/collection.json", 

      "type": "application/json", 

      "title": "NDVI product derived from UAV collected orthoimages" 

    }, 

    { 

      "rel": "child", 

      "href": "http://flexi-datacube.westeurope.cloudapp.azure.com/nginx/stac/uav_heatmap/collection.json", 

      "type": "application/json", 

      "title": "Heatmap product derived from UAV collected orthoimages" 

    }, 

    { 

      "rel": "self", 

      "href": "http://flexi-datacube.westeurope.cloudapp.azure.com/nginx/stac/catalog.json", 

      "type": "application/json" 

    } 

  ], 

  "stac_extensions": [], 

  "properties": {}, 

  "title": "FlexiGroBots STAC Catalog for the Spanish Pilot (Pilot #1)" 

} 

 

collection.json (uav_orthomosaic ) 

{ 

  "type": "Collection", 

  "id": "uav_orthomosaic", 

  "stac_version": "1.0.0", 

  "description": "Orthomosaics collected from regular UAV flights", 

  "links": [ 

    { 

      "rel": "root", 

      "href": "http://flexi-datacube.westeurope.cloudapp.azure.com/nginx/stac/catalog.json", 

      "type": "application/json", 

      "title": "FlexiGroBots STAC Catalog for the Spanish Pilot (Pilot #1)" 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   48 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

    }, 

    { 

      "rel": "item", 

      "href": "http://flexi-

datacube.westeurope.cloudapp.azure.com/nginx/stac/uav_orthomosaic/20210916T163000/20210916T163000.json", 

      "type": "application/json" 

    }, 

    { 

      "rel": "item", 

      "href": "http://flexi-

datacube.westeurope.cloudapp.azure.com/nginx/stac/uav_orthomosaic/20220714T130000/20220714T130000.json", 

      "type": "application/json" 

    }, 

    { 

      "rel": "item", 

      "href": "http://flexi-

datacube.westeurope.cloudapp.azure.com/nginx/stac/uav_orthomosaic/20220804T142500/20220804T142500.json", 

      "type": "application/json" 

    }, 

    { 

      "rel": "item", 

      "href": "http://flexi-

datacube.westeurope.cloudapp.azure.com/nginx/stac/uav_orthomosaic/20220824T123000/20220824T123000.json", 

      "type": "application/json" 

    }, 

    { 

      "rel": "item", 

      "href": "http://flexi-

datacube.westeurope.cloudapp.azure.com/nginx/stac/uav_orthomosaic/20220908T120000/20220908T120000.json", 

      "type": "application/json" 

    }, 

    { 

      "rel": "parent", 

      "href": "http://flexi-datacube.westeurope.cloudapp.azure.com/nginx/stac/catalog.json", 

      "type": "application/json", 

      "title": "FlexiGroBots STAC Catalog for the Spanish Pilot (Pilot #1)" 

    }, 

    { 

      "rel": "self", 

      "href": "http://flexi-datacube.westeurope.cloudapp.azure.com/nginx/stac/uav_orthomosaic/collection.json", 

      "type": "application/json" 

    } 

  ], 

  "stac_extensions": [], 

  "properties": {}, 

  "title": "Orthomosaics collected from regular UAV flights", 

  "extent": { 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   49 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

    "spatial": { 

      "bbox": [ 

        [ 

          -8.795820728356388, 

          41.954311015763786, 

          -8.791513991747848, 

          41.958047921588744 

        ] 

      ] 

    }, 

    "temporal": { 

      "interval": [ 

        [ 

          "2021-09-16T16:30:00Z", 

          "2022-09-08T12:00:00Z" 

        ] 

      ] 

    } 

  }, 

  "license": "private" 

} 

 

20210916T163000.json (item.json file) 

{ 

  "type": "Feature", 

  "stac_version": "1.0.0", 

  "id": "20210916T163000", 

  "properties": { 

    "platform": "UAV", 

    "gsd": 30, 

    "proj:epsg": 25829, 

    "proj:bbox": [ 

      516939.79761309625, 

      4644723.650525363, 

      517068.21438969235, 

      4644873.961964584 

    ], 

    "proj:geometry": { 

      "type": "Polygon", 

      "coordinates": [ 

        [ 

          [ 

            516940.15538014175, 

            4644723.650525363 

          ], 

          [ 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   50 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

            517068.21438969235, 

            4644723.957101174 

          ], 

          [ 

            517067.853918083, 

            4644873.961964584 

          ], 

          [ 

            516939.79761309625, 

            4644873.655387208 

          ], 

          [ 

            516940.15538014175, 

            4644723.650525363 

          ] 

        ] 

      ] 

    }, 

    "datetime": "2021-09-16T16:30:00Z" 

  }, 

  "geometry": { 

    "type": "Polygon", 

    "coordinates": [ 

      [ 

        [ 

          -8.795598481055004, 

          41.954311015763786 

        ], 

        [ 

          -8.794053309636507, 

          41.954311015763786 

        ], 

        [ 

          -8.794053309636507, 

          41.95566206941497 

        ], 

        [ 

          -8.795598481055004, 

          41.95566206941497 

        ], 

        [ 

          -8.795598481055004, 

          41.954311015763786 

        ] 

      ] 

    ] 

  }, 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   51 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

  "links": [ 

    { 

      "rel": "root", 

      "href": "http://flexi-datacube.westeurope.cloudapp.azure.com/nginx/stac/catalog.json", 

      "type": "application/json", 

      "title": "FlexiGroBots STAC Catalog for the Spanish Pilot (Pilot #1)" 

    }, 

    { 

      "rel": "collection", 

      "href": "http://flexi-datacube.westeurope.cloudapp.azure.com/nginx/stac/uav_orthomosaic/collection.json", 

      "type": "application/json", 

      "title": "Orthomosaics collected from regular UAV flights" 

    }, 

    { 

      "rel": "parent", 

      "href": "http://flexi-datacube.westeurope.cloudapp.azure.com/nginx/stac/uav_orthomosaic/collection.json", 

      "type": "application/json", 

      "title": "Orthomosaics collected from regular UAV flights" 

    }, 

    { 

      "rel": "self", 

      "href": "http://flexi-

datacube.westeurope.cloudapp.azure.com/nginx/stac/uav_orthomosaic/20210916T163000/20210916T163000.json", 

      "type": "application/json" 

    } 

  ], 

  "assets": { 

    "B01": { 

      "href": "/data/flexigrobots-pilot1/uav_orthomosaic/20210916T163000/20210916T163000-uav-orthomosaic-b01-

blue.tif", 

      "type": "image/tiff; application=geotiff", 

      "file:size": 30605028, 

      "eo:bands": [ 

        { 

          "name": "B01", 

          "common_name": "blue", 

          "description": "Blue: 475 - 20 nm", 

          "center_wavelength": 0.475, 

          "full_width_half_max": 0.02 

        } 

      ], 

      "proj:epsg": 25829, 

      "proj:geometry": { 

        "type": "Polygon", 

        "coordinates": [ 

          [ 

            [ 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   52 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

              516940.1546510186, 

              4644723.956236722 

            ], 

            [ 

              517067.85465277196, 

              4644723.956236722 

            ], 

            [ 

              517067.85465277196, 

              4644873.656238778 

            ], 

            [ 

              516940.1546510186, 

              4644873.656238778 

            ], 

            [ 

              516940.1546510186, 

              4644723.956236722 

            ] 

          ] 

        ] 

      }, 

      "proj:bbox": [ 

        516940.1546510186, 

        4644723.956236722, 

        517067.85465277196, 

        4644873.656238778 

      ], 

      "proj:shape": [ 

        2994, 

        2554 

      ], 

      "proj:transform": [ 

        0.050000000686501574, 

        0.0, 

        516940.1546510186, 

        0.0, 

        -0.050000000686501574, 

        4644873.656238778, 

        0.0, 

        0.0, 

        1.0 

      ], 

      "raster:bands": [ 

        { 

          "data_type": "float32", 

          "scale": 1.0, 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   53 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

          "offset": 0.0, 

          "sampling": "area", 

          "statistics": { 

            "mean": 7902.81689453125, 

            "minimum": 0.0, 

            "maximum": 65535.0, 

            "stddev": 8515.0390625, 

            "valid_percent": 0.00011173483981693364 

          }, 

          "histogram": { 

            "count": 11, 

            "min": 0.0, 

            "max": 65535.0, 

            "buckets": [ 

              393547, 

              284446, 

              133561, 

              55360, 

              18288, 

              6103, 

              2099, 

              865, 

              382, 

              325 

            ] 

          } 

        } 

      ], 

      "roles": [ 

        "data" 

      ] 

    }, 

 

…. Edited for space saving in the document … 

, 

    "B05": { 

      "href": "/data/flexigrobots-pilot1/uav_orthomosaic/20210916T163000/20210916T163000-uav-orthomosaic-b05-

nir.tif", 

      "type": "image/tiff; application=geotiff", 

      "file:size": 30605028, 

      "eo:bands": [ 

        { 

          "name": "B05", 

          "common_name": "nir", 

          "description": "Near-IR1: 840 - 40 nm", 

          "center_wavelength": 0.84, 

          "full_width_half_max": 0.04 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   54 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

        } 

      ], 

      "proj:epsg": 25829, 

      "proj:geometry": { 

        "type": "Polygon", 

        "coordinates": [ 

          [ 

            [ 

              516940.1546510186, 

              4644723.956236722 

            ], 

            [ 

              517067.85465277196, 

              4644723.956236722 

            ], 

            [ 

              517067.85465277196, 

              4644873.656238778 

            ], 

            [ 

              516940.1546510186, 

              4644873.656238778 

            ], 

            [ 

              516940.1546510186, 

              4644723.956236722 

            ] 

          ] 

        ] 

      }, 

      "proj:bbox": [ 

        516940.1546510186, 

        4644723.956236722, 

        517067.85465277196, 

        4644873.656238778 

      ], 

      "proj:shape": [ 

        2994, 

        2554 

      ], 

      "proj:transform": [ 

        0.050000000686501574, 

        0.0, 

        516940.1546510186, 

        0.0, 

        -0.050000000686501574, 

        4644873.656238778, 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   55 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

        0.0, 

        0.0, 

        1.0 

      ], 

      "raster:bands": [ 

        { 

          "data_type": "float32", 

          "scale": 1.0, 

          "offset": 0.0, 

          "sampling": "area", 

          "statistics": { 

            "mean": 8316.51953125, 

            "minimum": 0.0, 

            "maximum": 65535.0, 

            "stddev": 9511.4453125, 

            "valid_percent": 0.00011173483981693364 

          }, 

          "histogram": { 

            "count": 11, 

            "min": 0.0, 

            "max": 65535.0, 

            "buckets": [ 

              424589, 

              228014, 

              130094, 

              66882, 

              26337, 

              11054, 

              4804, 

              2068, 

              790, 

              344 

            ] 

          } 

        } 

      ], 

      "roles": [ 

        "data" 

      ] 

    } 

  }, 

  "bbox": [ 

    -8.795598481055004, 

    41.954311015763786, 

    -8.794053309636507, 

    41.95566206941497 

  ], 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   56 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

  "stac_extensions": [ 

    "https://stac-extensions.github.io/eo/v1.0.0/schema.json", 

    "https://stac-extensions.github.io/projection/v1.0.0/schema.json" 

  ], 

  "collection": "uav_orthomosaic" 

} 

 

And the YAML file with the UAV ortho-mosaic definition: 

flexigrobots_pilot1_uav_orthomosaic.odc-product.yaml 

--- 

name: uav_orthomosaic 

description: Orthomosaics collected from regular UAV flights in the Spanish pilot geographic area 

metadata_type: eo3 

 

metadata: 

  product: 

    name: uav_orthomosaic 

 

measurements: 

  - name: "B01" 

    aliases: [band_01, b01, blue] 

    units: "1" 

    dtype: float32 

    nodata: 0 

 

  - name: "B02" 

    aliases: [band_02, b02, green] 

    units: "1" 

    dtype: float32 

    nodata: 0 

 

  - name: "B03" 

    aliases: [band_03, b03, red] 

    units: "1" 

    dtype: float32 

    nodata: 0 

 

  - name: "B04" 

    aliases: [band_04, b04, rededge, red-edge, red_edge] 

    units: "1" 

    dtype: float32 

    nodata: 0 

 

  - name: "B05" 

    aliases: [band_05, b05, nir, near-infra-red, near_infra_red] 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   57 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

    units: "1" 

    dtype: float32 

    nodata: 0 

 

  - name: "B06" 

    aliases: [band_06, b06, panchromatic] 

    units: "1" 

    dtype: float32 

    nodata: 0 

 

  - name: "B07" 

    aliases: [band_07, b07, thermal, lwir] 

    units: "1" 

    dtype: float32 

    nodata: 0 

 

4.4 Application Programming Interfaces (APIs) 

The OGC APIs described in D3.1 are still relevant for the use of the Open Data Cube. 

4.5 Graphical User Interfaces (GUIs) 

The graphical user interfaces described in D3.1 are still relevant for the use of the Open Data 

Cube. 

4.6 Installation 

The Python script for generating the STAC metadata is available in GitHub: 

https://github.com/FlexiGroBots-H2020/Geospatial-Enablers-Spanish-Pilot 

The complete instructions for cloning locally the GitHub project (which includes now the “stac-

generator.py” script) and deploying a working ODC instance can be found in D3.1. 

The following instructions focus on the requirements installation for running the script and 

the necessary steps for generating the STAC metadata corresponding to the UAV imagery and 

indexing it in the ODC. 

1. Install the following packages with apt-get install and pip3 

   $ sudo apt-get update && sudo apt-get install python3-pip python-numpy gdal-bin 

libgdal-dev 

   $ pip3 install boto3 shapely rasterio rio-stac pystac[validation] 

2. Generate the STAC metadata 

https://github.com/FlexiGroBots-H2020/Geospatial-Enablers-Spanish-Pilot


 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   58 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

   $ cd Geospatial-Enablers-Spanish-Pilot/datacube/ 

   $ ./stac-generator.py 

3. Index the data products in the ODC using the STAC metadata generated in the previous 

step and the products definitions (YAML files) 

   $ docker exec -it ${CONTAINER_NAME} /bin/bash -c "fs-to-dc --stac --update-if-exists --

allow-unsafe /data/flexigrobots-pilot1; exit" 

 

4. Update the ODC Explorer so the new data is visible 

   $ docker exec -it ${CONTAINER_NAME} /bin/bash -c "cubedash-gen --init --all; sleep 5; 

cubedash-run; sleep 5; exit" 

 

5. Update the ODC OGC services so they can offer the new indexed data 

   $ docker exec -it ${CONTAINER_NAME} /bin/bash -c "datacube-ows-update --schema --role 

postgres; sleep 5; datacube-ows-update --views; sleep 5; datacube-ows-update; sleep 5; 

exit" 

4.7 Prototype availability within FlexiGroBots 

The “stac-generation.py” script is already available and has been successfully used to index 

within the ODC the data produced from the various UAV flights in the Spanish pilot area. 

 
Figure 19 Visualization and integration of the different raster layers offered by ODC using the QGIS tool 

(images correspond to points 1 and 2 respectively) 

Figure 19 shows in QGIS10 

1) the Combined visualization of Sentinel 2 (lower resolution) and UAV ortho-mosaic 

(higher resolution) of the Spanish pilot area using the OGC service provided by ODC 

2) the Combined visualization of a) Sentinel 2 (lower resolution), b) UAV orthomosaic 

(higher resolution), c) NDVI calculated from UAV orthomosaic (the calculation is done 

 
10 http://qgis.org/ 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   59 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

on-the-fly by the ODC), and 4) the Botrytis vector-based datasets provided by 

MapServer component using OGC WFS protocol. 

4.8 Release planning 

According to the release planning described in D3.1, User Stories GEO_US_01, GEO_US_02, 

GEO_US_03, GEO_US_04, GEO_US_05 and GEO_US_06 have been completed. User Stories 

GEO_US_07, GEO_US_08 and GEO_US_09 are currently on hold as the pilots have not 

requested their implementation. 

User story ID User story Priority Story 
points 

GEO_US_07 Deployment and configuration of odc-wps on top of 
the ODC in order to enable the possibility to directly 
execute specific algorithms using the EO data offered 
by the ODC using the OGC WPS API 

Medium 6 

GEO_US_08 Implement algorithms (to be discussed and 
prioritized with pilots, e.g., NDVI calculation) using 
ODC EO data and expose them via the OGC WPS API 

Medium 8 

GEO_US_09 Index other additional EO/raster-based datasets 
potentially useful/necessary for the FlexiGroBots 
pilots (e.g., Landsat 8 imagery, DEM, etc.) 

Low 4 

Table 4 User stories for the geospatial processing and services 

  



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   60 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

5 Common application services 

As introduced in deliverable D3.1, and as a conclusion of the requirements gathering carried 

out at the beginning of the project, there are several needs common among FlexiGroBots’ 

pilots. These needs are the basis for the development of the common applications within the 

context of task T3.4, whose progress from the state presented in D3.1 will occupy the 

following pages of this document.  

As a brief recap, the common applications are grouped into 3 clusters: (i) Situational 

Awareness, (ii) Utilities, and (iii) Generalisation. These software applications are intended to 

be reusable and can be easily customized to solve pilot-specific tasks. For further information 

on each cluster, please refer to the appropriate category below. 

The implementation of these applications has included state-of-the-art architectures, 

datasets, repositories, and models. The combination and adaptation of all these elements, 

together with in-house developments and data collected in the field, represent the real added 

value of FlexiGroBots’ T3.4 task. 

5.1 Situational Awareness 

Major developments have been included, improved, and updated in this group of tools since 

the status reported in D3.1.  

It is recalled that the aim of these tools is to provide robots and their operators with as much 

relevant information as possible about their operational environment. The tools included into 

this group are: (i) SLAM, (ii) People detection, location, and tracking, (iii) People behaviour 

estimation, and (iv) Moving objects detection. 

5.1.1 SLAM 

Recapping on D3.1, the objective remains the same, to reconstruct the environment in which 

a robot navigates and to locate the robot in this environment, but the approach has changed. 

The fundamental idea is still to do it based on the visual features of the environment, but the 

disappointing results obtained by applying state-of-the-art algorithms [30] [31] on video 

captured with monocular camera have led the development team to consider alternative 

solutions. A sample of the results obtained, and their interpretation can be seen on Figure 20 

and in the following paragraph. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   61 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 
Figure 20 Frames resulting from the application of the algorithm [32] on video from Pilot 1 

These two frames attached above reflect the malfunctioning of the previously, D3.1, proposed 

SLAM approach, using [32] as the implementation of [30]. The two frames are close in time, 

the real displacement of the camera is horizontal with constant orientation, but the pose 

estimated by the SLAM algorithm reflects a non-existent twist of about 110 degrees. 

For this reason, it has been decided to introduce the use of Zed2i [33] , a stereoscopic camera 

with inertial info, into the project. The new approach is to adapt the commercial product's 

own software to the needs of FlexiGroBots’ pilots, adding the necessary extra functionalities 

in case of detecting possible improvements. 

The tests being carried out with the camera and commercial software are still at an early stage, 

but first results have already been obtained in tests in an indoor scenario, Figure 21, and 

efforts continue to make the most of it and adapt this technology for the FlexiGroBots’ use 

case. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   62 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 
Figure 21 GUI of pose estimation and 3D reconstruction in indoor scenario with stereo camera [33] 

The main added value of such an application for the project is to be able to locate the robots 

and estimate their trajectory even when GPS signal is lost or not available, as well as to have 

a 3D reconstruction of the scenarios that can be useful to inspect the field in a virtual way or 

to keep a historical record of the state of the crop/planting. 

5.1.1.1 Implemented functionalities  

After discarding the first solution implemented due to poor performance, the solution 

currently proposed is to use the software offered by the manufacturers of the stereo camera 

[33], which has the necessary functionalities already implemented, such as: 

• 3D positional tracking and pose of the camera. 

• Spatial mapping using visual-inertial SLAM technology.  

Work now focuses on adapting these functionalities and testing their usefulness in the context 

of the project. 

5.1.1.2 Technical requirements 

The main technical requirement that has been modified since the previous release is the 

replacement of the monocular camera by a stereoscopic one. 

All technical requirements for using this commercial camera and its SDK are defined on the 

vendor's website [33]. The SDK can be downloaded on Linux, Windows, and Jetson; and offers 

solutions for both Python and C++ languages. It is necessary to have sufficient disk space to 

be able to download and run the docker image, also enough ram to host models. It is highly 

recommended to have a Nvidia GPU to speed up the auto-labelling process of the data. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   63 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

5.1.1.3 Functional requirements 

Not new functional requirements included from them introduced in D3.1.  

5.1.1.4 Data models 

Using the stereo camera as input, this application generates an incremental 3D map, which is 

stored as a point cloud in a fpc.obj file or as a 3D mesh in mesh_gen.obj, and provides the 

output streams of the individual cameras, the composite image and the depth estimation. 

5.1.1.5 Application Programming Interfaces (APIs) 

The commercial product [33] provides its own python API that is being used as interface to 

obtain the pose and spatial information. All components listed in D3.1 continue to apply. 

5.1.1.6 Graphical User Interfaces (GUIs) 

Several graphical user interfaces are included in the commercial tool to facilitate the correct 

visualisation of the included functionalities. As an example, see Figure 21 attached above, and 

Figure 22 extracted from the camera documentation. 

 
Figure 22 3D positional tracking and mapping with Zed2i stereo cam. Source: [33] 

5.1.1.7 Installation 

The installation steps are included as part of the material provided on the manufacturer’s 

website [33]. If it’s necessary, further information will be given in the requirements file 

attached with the code. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   64 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

5.1.1.8 Prototype availability within FlexiGroBots 

This module has not yet reached the stage of functional prototype available to all stakeholders 

on the AI platforms or the project repository. The change of solution has caused this tool to 

fall behind the estimated status. 

5.1.1.9 Release planning 

User story ID User story Priority Story 
points 

CAS_SLAM_US_05 Create virtual maps and 3D meshes from Pilot 1 

and Pilot 3 scenes 

Medium 5 

CAS_SLAM_US_06 Upload the application to the AI platform and 
prepare deployment for required devices 

Medium 3 

CAS_SLAM_US_07 Adapt stereo cam 3D position and pose 
estimation code to project’s context 

High 8 

CAS_SLAM_US_08 Adapt stereo cam spatial mapping code to 
project’s context 

High 8 

Table 5 User stories for SLAM 

5.1.2 People detection, location, and tracking 

There have been no changes in the definition of the tool and its functional requirements with 

respect to D3.1. It is still intended to use a monocular camera mounted on the UGV to monitor 

the robot's environment and provide it with a degree of situational awareness of visible 

people and objects. 

Extensive software development has been carried out for this application, with new models 

for detection, segmentation, tracking and depth estimation having been introduced to adopt 

existing major advances since the emergence of visual transformers as a disruptive model 

architecture for computer vision AI solutions. 

Figure 23 shows the result of the application in two time instants collected in the same video 

of Pilot 1. On the left are the detections with their track id, together with an asterisk indicating 

the nearest person and a label indicating whether the person is at a safe distance or whether 

he/she is in a caution zone. On the right is the estimated depth of each of the scenes from an 

image collected with a monocular camera. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   65 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 

 
Figure 23. Output frames from PDLT app: RGB with detection info (left), monocular depth estimation (right) 

The currently designed algorithm uses Detic, proposed in [34], as the detection and 

segmentation model. This model takes advantage of CLIP's [35] ability to relate textual and 

visual concepts, so that Detic can be trained for detection tasks using datasets prepared for 

classification tasks. This is a huge evolution, as classification datasets have a larger number of 

labelled concepts. In addition, the very fact of adopting CLIP allows Detic to perform zero-shot 

detection on unseen objects during model training.  

The tracking of people and objects is carried out by combining the output of the previous 

detector with a particular implementation of DeepSORT [36] that uses CLIP as visual feature 

extractor. This implementation, adopted from [37], replaces the conventional re-ID part of 

DeepSORT to make it applicable to all types of objects without the need for retraining, as the 

convolutional model included in the standard DeepSORT is optimised for tracking people. 

The estimation of the depth of objects and people is carried out by overlapping the 

segmentation mask obtained with Detic on the output of a visual transformer trained to 

estimate the depth of scenes captured with a monocular camera, DPT [38]. As shown in Figure 

24, the edges of the segmentation masks are eroded to avoid picking up parts of the 

background, and the pixel values of that central area of the objects are averaged. The output 

image of the depth estimation model is a single channel image, in which each pixel represents 

an estimate of the absolute depth of the element to which that pixel belongs. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   66 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

          
Figure 24. Segmentation and erode process to estimate mean object depth 

In order to improve the correspondence between the depth estimates of consecutive frames, 

Kalman filters have been introduced to smooth the values according to the previous ones. To 

obtain more accurate estimation of the position of the elements in the camera's field of view, 

without resorting to the SLAM technology introduced in the previous section 5.1.1, it would 

be necessary to perform a complex calibration, not of the camera intrinsic, but of the depth 

estimation algorithm. For this reason, it is considered that the objective of increasing safety is 

solved by providing the robot with a relative knowledge of the position of certain elements 

and being able to establish proximity limits to avoid collisions.  

The entire pipeline described above is shown in Figure 25. 

 
Figure 25 PDLT pipeline description 

The main added value of such an application for the project is to increase awareness of the 

robot's environment and thus improve safety, without the need for expensive stereo cameras. 

The current software not only covers the requirements described for the task but goes further 

and extends these functionalities not only for people, but also for other objects or vehicles 

that may be present in an agricultural field. 

5.1.2.1 Implemented functionalities  

The current implementation of the tool offers the following functionalities: 

• Detection and tracking of people. 

• Detection and tracking of other objects or vehicles. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   67 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

• Approximate estimation of the distance of persons/objects from the monocular 

camera. Kalman filter included to smooth the frame-to-frame depth estimation.  

• Visual warning in case of getting too close to the camera position. Settable threshold 

safety distance.  

• Visual marking of the nearest person/object by marking *. 

5.1.2.2 Technical requirements 

All requirements defined in D3.1 remain valid. The implemented models are HW demanding, 

requiring a powerful GPU to give an adequate fps performance, between 3 and 5 depending 

on the number of objects tracked, in a Nvidia 3080 family GPU. Models need at least 6 GB of 

free GPU memory to be allocated, and docker image consume up to 15 GB of disk. This tool 

has been also tested in a Nvidia GeForce GTX 1070 with CUDA 11.3 and python3.8. 

 

5.1.2.3 Functional requirements 

There have been no variations with respect to what was specified in the previous document, 

D3.1. 

5.1.2.4 Data models 

This application does not store data in any format, it takes a video stream as input and 

provides one or more video streams as output, in mp4/avi format, or individual frames, in 

jpg/png. There is the possibility of defining other outputs, such as proximity alerts, but at this 

point of the project the requirements and formats of these messages have not been defined. 

5.1.2.5 Application Programming Interfaces (APIs) 

The definition of a final interface to interact with the tool is pending the implementation of 

the tool as an inference service in the FlexiGroBots AI platform. Currently, the software is 

executed as a python script inside a docker container. All components listed in D3.1 continue 

to apply. 

5.1.2.6 Graphical User Interfaces (GUIs) 

There is no GUI beyond the display of the output videos themselves. 

5.1.2.7 Installation 

To install this application and be able to run it, it is only necessary to have the required 

permissions in the repository of the project to download the app docker image, as following: 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   68 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

docker pull ghcr.io/flexigrobots-h2020/pdlt-tool 
 

It is possible to check the possible input parameters of the application script through the 

following command: 

docker run -it pdlt-tool --help 
 

Once you have checked that the image is running properly and the possible input parameters 

are known, delete the previous container and run it again with the desired parameters. 

5.1.2.8 Prototype availability within FlexiGroBots 

The prototype of this application is available in the project's GitHub repository by downloading 

and executing the docker image named pdlt-tool. 

Access to the code repository is private, only members of the repository are allowed. People 

linked to the project who are not members of the repository will be able to access on demand. 

The link to the private repository is: https://github.com/FlexiGroBots-H2020/pdlt-tool. 

5.1.2.9 Release planning 

User story ID User story Priority Story 
points 

CAS_PLDT_US_05 Evaluate and test in field conditions (Pilots 1 and 

3) 

Medium 3 

CAS_PLDT_US_06 Upload the application to the AI platform and 
prepare deployment for required devices 

Medium 3 

CAS_PLDT_US_07 Refine scene depth estimation High 2 

CAS_PLDT_US_08 Define and implement possible communications 
with the MCC 

Low 2 

Table 6 User stories for people detection, location, and mapping 

5.1.3 People action recognition 

The objectives and task description reflected in D3.1 are maintained, but the software has 

been completely updated since that release. The current solution implements a 

spatiotemporal action detection model [39] trained on the AVA dataset [40]. 

AVA actions dataset has 80 labelled actions, among which several of interest for the context 

of the FlexiGroBots project can be found. The images included in Figure 26 show frames 

extracted from videos processed with this common application and they demonstrate how it 

is possible to detect actions such as standing, crouching, kneeling, walking, or carrying 

something. 

https://github.com/FlexiGroBots-H2020/pdlt-tool


 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   69 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

  

  
Figure 26 Human action recognition application applies to raw images from Pilot 1 

The added value of detecting this type of actions is to increase safety of the operators, for 

example, being able to detect people sitting or lying on the floor, or people walking too close 

to the robot if this AI module is linked with the previous tool module. There are a multitude 

of use cases that could use this tool to obtain valuable information from the scene. 

5.1.3.1 Implemented functionalities 

The current implementation of the tool offers the following functionalities: 

• People detection in image. 

• Human action recognition based on the spatiotemporal evolution of their body 

position. 80 classes of actions available in the original implementation [39]. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   70 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

5.1.3.2 Technical requirements 

This tool has been implemented in a Nvidia GeForce GTX 1070 with CUDA 11.3 and python3.8, 

achieving frame rates of 5 fps and requesting 6 GB of free GPU memory to host the model. 

Docker image needs 12 GB of free space in memory. 

5.1.3.3 Functional requirements 

There have been no variations with respect to what was specified in the previous document, 

D3.1. 

5.1.3.4 Data models 

This application does not store data in any format, it takes a video stream as input and 

provides one or more video streams as output, in mp4/avi format, or individual frames, in 

jpg/png. There is the possibility of defining other outputs, such as alert to certain recognized 

actions, but at this point of the project the requirements and formats of these messages have 

not been defined. 

5.1.3.5 Application Programming Interfaces (APIs) 

The definition of a final interface to interact with the tool is pending the implementation of 

the tool as an inference service in the FlexiGroBots AI platform. Currently, the software is 

executed as a python script inside a docker container. All components listed in D3.1 continue 

to apply. 

5.1.3.6 Graphical User Interfaces (GUIs) 

There is no GUI beyond the display of the output videos themselves. 

5.1.3.7 Installation 

To install this application and be able to run it, it is only necessary to have the required 

permissions in the repository of the project to download the app docker image, as following: 

docker pull ghcr.io/flexigrobots-h2020/har-tool 
 

It is possible to check the possible input parameters of the application script through the 

following command: 

docker run -it har-tool --help 
 

Once you have checked that the image is running properly and the possible input parameters 

are known, delete the previous container and run it again with the desired parameters. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   71 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

5.1.3.8 Prototype availability within FlexiGroBots 

The prototype of this application is available in the project's GitHub repository by downloading 

and executing the docker image named har-tool. 

Access to the code repository is private, only members of the repository are allowed. People 

linked to the project who are not members of the repository will be able to access on demand. 

The link to the private repository is: https://github.com/FlexiGroBots-H2020/har-tool. 

5.1.3.9 Release planning 

User story ID User story Priority Story 
points 

CAS_PBE_US_04 Evaluate and test in field conditions (Pilots 1 and 3) Medium 3 

CAS_PBE_US_05 Upload the application to the AI platform and 
prepare deployment for required devices 

Medium 3 

CAS_PBE_US_06 Adapt the implemented model for the most 
relevant classes of actions in the project scenarios 

Medium 5 

CAS_PBE_US_07 Define and implement possible communications 
with the MCC 

Low 2 

Table 7 User stories for people action recognition 

5.1.4 Moving objects detection, location, and tracking 

The description of the purpose and operating conditions of this application remain as 

described in document D3.1. 

The proposed solution implements an aerial image object detection model, TPH-YOLOv5, 

trained with a dataset developed as part of the task, which includes images of tractors from  

UAVs in Pilot 1, images obtained with the tool introduced in 5.2.3, and images from the 

Visdrone dataset [41].  

TPH-YOLOv5 is a variation of the YOLOv5 [42] model, widely used in image object detection 

applications, specifically modified to improve performance in aerial scenarios where objects 

have tiny sizes. This model has four Transformer Prediction Heads (TPH) that connect to the 

convolutional backbone of the conventional YOLO architecture, thus incorporating the 

attention mechanism of the Transformers to improve performance in distant images. More 

model details can be found in Annex A. 

The tracking of the detected objects is performed by the algorithm introduced in section 5.1.2, 

an adaptation of DeepSort with CLIP as feature extractor [37]. For more details, it is 

recommended to read the contents of the above-mentioned section. 

Figure 27 schematically represents the processing flow of the proposed solution. 

https://github.com/FlexiGroBots-H2020/har-tool


 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   72 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 
Figure 27 MODLT pipeline description 

Figure 28 shows some frames that exemplify the results obtained by applying the introduced 

detection and tracking tool. The trained model can detect and identify different concepts, 

such as tractors, cars, vans, and people. More dataset details can be found in Annex A. 

   

 
Figure 28 Output frames from MODLT common application pipeline 

The added value of this application is the increased monitoring and safety in the agricultural 

field. Having the ability to monitor the position and trajectory of vehicles and people means 

being able to foresee possible risk situations in which the actors get too close to each other or 

move away from predefined working area. This tool will be very useful for the mission control 

centre and for adding an extra layer of safety to autonomous tractors. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   73 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

5.1.4.1 Implemented functionalities  

The current implementation of the tool offers the following functionalities: 

• Detection of objects in aerial images taken with UAV from heights up to 100 meters. 

Detected classes are tractor, people, car, van, and truck. 

• Tracking of detected objects. 

5.1.4.2 Technical requirements 

This tool has been implemented in a Nvidia GeForce GTX 1070 with CUDA 11.3 and python3.8, 

achieving frame rates of 5 fps and requesting 4 GB of free GPU memory to host the models. 

Docker images needs 15 GB of free space in memory.  

5.1.4.3 Functional requirements 

There have been no variations with respect to what was specified in the previous document, 

D3.1. 

5.1.4.4 Data models 

This application does not store data in any format, it takes a video stream as input and 

provides one or more video streams as output, in mp4/avi format, or individual frames, in 

jpg/png. There is the possibility of defining other outputs, such as certain events alert, but at 

this point of the project the requirements and formats of these messages have not been 

defined. 

5.1.4.5 Application Programming Interfaces (APIs) 

The definition of a final interface to interact with the tool is pending the implementation of 

the tool as an inference service in the FlexiGroBots AI platform. Currently, the software is 

executed as a python script inside a docker container. All components listed in D3.1 continue 

to apply. 

5.1.4.6 Graphical User Interfaces (GUIs) 

There is no GUI beyond the display of the output videos themselves. in the future, if this tool 

is included in the mission control centre, its GUI will be used to display the information. 

5.1.4.7 Installation 

To install this application and be able to run it, it is only necessary to have the required 

permissions in the repository of the project to download the app docker image, as following: 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   74 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

docker pull ghcr.io/flexigrobots-h2020/modlt-tool 
 

It is possible to check the possible input parameters of the application script through the 

following command: 

docker run -it modlt-tool --help 
 

Once you have checked that the image is running properly and the possible input parameters 

are known, delete the previous container and run it again with the desired parameters. 

5.1.4.8 Prototype availability within FlexiGroBots 

The prototype of this application is available in the project's GitHub repository by downloading 

and executing the docker image named modlt-tool. 

Access to the code repository is private, only members of the repository are allowed. People 

linked to the project who are not members of the repository will be able to access on demand. 

The link to the private repository is: https://github.com/FlexiGroBots-H2020/modlt-tool. 

5.1.4.9 Release planning 

User story ID User story Priority Story 
points 

CAS_MODLT_US_03 Evaluate and test in field conditions (Pilots 1, 2 

and 3) 

High 3 

CAS_MODLT_US_04 Upload the application as AI platform inference 
service and prepare deployment for required 
devices 

Medium 3 

CAS_MODLT_US_05 Improve model performance by adding more 
data to the dataset and improving model quality 

High 5 

CAS_MODLT_US_06 Implement a method for estimating the 
distance between objects in the image to warn 
of possible risk situations 

Medium 5 

CAS_MODLT_US_07 Define and implement possible 
communications with the MCC 

Low 2 

Table 8 User stories for moving objects detection and tracking 

5.2 Utilities 

As introduced in D3.1, the applications included in this group are those that can be used as an 

added step in different processes, or as a basis for generating a specific solution for each pilot 

according to its own requirements.  

https://github.com/FlexiGroBots-H2020/modlt-tool


 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   75 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

The evolution of this group of applications since the previous release has been remarkable. 

Three new tools have been introduced and implemented since last deliverable, one of them 

replacing the “GIS plug-in” application included in D3.1. 

5.2.1 Orthomosaic Assessment Tool 

The application described in this section replaces the one that in document D3.1 occupied 

item 5.2.1, "GIS plug-in". The substitution of this application is motivated by the fact that the 

interest in the previous tool was not common, it was only required by a single pilot, and on 

the contrary, there was consensus with the one currently included. All the parties involved 

agreed with the modification and the content of the previous app was dumped into task T3.3. 

The orthomosaic assessment tool is a software designed to generate an orthomosaic by 

stitching in the raw images as extracted from the UAV. Moreover, it generates the Digital 

Terrain Model (DTM) and Digital Surface Model (DSM) while processing the orthomosaic. This 

process is done by implementing the command line toolkit provided by OpenDroneMap [43]. 

After the generation of the primary products, the software continues running to generate 

intermediate products, such as the Canopy Height Model (CHM), the Normalized Difference 

Vegetation Index (NDVI), and the Leaf Area Index (LAI) based on the projected shadows [44]. 

These intermediate products are used along with ground truth data to train a Random Forest 

(RF) algorithm, which will predict the presence/absence of a disease based on the variables 

inputted. Finally, the risk points are used to generate a heatmap and a risk assessment report. 

The application for which the orthomosaic assessment tool was designed was to assess the 

early presence of Botrytis cinerea in vineyards and hence, the final heatmap represents the 

hotspot areas in which the disease has higher probability to be developed. 

5.2.1.1 Implemented functionalities 

The current implementation of the tool offers the following functionalities: 

• Detection of Botrytis cinerea hotspots using UAV multispectral imagery. 

• The tool generates a Botrytis risk heatmap and an assessment report.  

5.2.1.2 Technical requirements 

The libraries necessary for the utilization of the orthomosaic assessment tool software are 

listed in the requirements.txt, included along with the code, some of the most noteworthy are 

Fiona, rasterio, osgeo, GDAL and geopandas. Furthermore, this application requires sufficient 

disk space to be able to deploy the docker container, up to 8 GB of free memory.   



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   76 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

5.2.1.3 Functional requirements 

The functional requirements defined for this tool to be able to provide a solution to the 

detected needs are that the user can enter raw data extracted from the UAV and that 

heatmaps can be generated without errors at least every 12 hours. 

5.2.1.4 Data models 

This application does not store data in any format, it intakes multispectral images as extracted 

from the UAV, process them generating intermediate products, which are stored, and finally 

generates the Botrytis risk heatmap and the PDF report. 

5.2.1.5 Application Programming Interfaces (APIs) 

The software can be executed in script mode or cross-platform inside a Python interpreter, 

such as PyCharm (JetBrains s.r.o., Prague, Czech Republic). 

5.2.1.6 Graphical User Interfaces (GUIs) 

There is no GUI beyond the display of the botrytis risk heatmap and the PDF report. For the 

visualization of the map, GIS software such as the open-source software called QGIS is 

recommended. 

5.2.1.7 Installation 

The user should have the software Docker [45] installed.  

Next, the user should modify the directories in the main.py script to match the directory in 

which the raw images as extracted from the UAV are located. Moreover, the user should 

modify the director of the intermediate products and final deliverables. 

5.2.1.8 Prototype availability within FlexiGroBots 

The orthomosaic assessment tool will be available at the GitHub repository of FlexiGroBots 

along with a README.md file with the most relevant information to run the software. 

Access to the code repository is private, only members of the repository are allowed. People 

linked to the project who are not members of the repository will be able to access on demand. 

The link to the private repository is: https://github.com/FlexiGroBots-H2020/orthomosaic-

assessment-tool. 

https://github.com/FlexiGroBots-H2020/orthomosaic-assessment-tool
https://github.com/FlexiGroBots-H2020/orthomosaic-assessment-tool


 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   77 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

5.2.1.9 Release planning 

User story ID User story Priority Story 
points 

CAS_OAT_US_01 Generate an orthomosaic, DTM, and DSM High 8 

CAS_OAT_US_02 Compute the CHM Medium 3 

CAS_OAT_US_03 Compute the NDVI and crop it to the extension 

of the CHM 

Medium 3 

CAS_OAT_US_04 Compute the LAI   Medium 3 

CAS_OAT_US_05 Train the Random Forest model High 8 

CAS_OAT_US_06 Test the RF model Medium 5 

CAS_OAT_US_07 Generate the heatmap High 5 

CAS_OAT_US_08 Generate the risk report Medium 3 

Table 9 User stories for GIS plug-in 

5.2.2 Anonymization Tool 

The anonymization common application is introduced for the first time in this document, as it 

was not presented in the previous deliverable, D3.1. 

The purpose of this software is to provide a solution for compliance with the General Data 

Protection Regulation (GDPR). In any situation that involves working with videos or images in 

which people's faces can be seen, problems arise with this directive, as their privacy is 

violated. Without this tool, explicit authorization is required to show or use these images, 

which is a complication and can be very limiting. 

For this reason, a tool has been developed to anonymize the faces that appear in the images 

of the pilots, either by superimposing a black square on the face, or by generating a synthetic 

face using a Generative Adversarial Network (GAN). Two examples of the results obtained are 

shown in Figure 29 The black square approach is faster, but the fake face generation it is better 

to avoid bias if the output images will be used to be included in a dataset. 

       



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   78 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

     
Figure 29. Anonymized faces modes in FlexiGroBots’ common application 

The developed tool implements the code of the DeepPrivacy repository, [46], adapting it and 

adding the additional functionalities needed to meet the requirements of FlexiGroBots. The 

solution proposed in [46] implements a two-step approach, in which first the faces and their 

keypoints are detected with convolutional neural networks, and then fed to GAN to generate 

a face in the correct position and orientation. Figure 30 shows the quality and consistency of 

the generated faces. 

 
Figure 30 Fake face generation with DeepPrivacy GAN [46] 

The added value of this application is not negligible, since it covers an existing need and solves 

possible legal issues, improving the quality of the possible datasets generated with the images 

collected in the pilots, avoiding a significant bias due to the presence of black or blurred 

squares instead of faces. 

5.2.2.1 Implemented functionalities 

The current implementation of the tool offers the following functionalities: 

• Detect faces position in image. 

• Extract face keypoints for each face in the image. 

• Anonymize faces with a black box or a coherent fake face generate with a GAN. 

5.2.2.2 Technical requirements 

This application requires sufficient disk space to be able to deploy a docker container of the 

image available in the repository, 12 GB approximately, and GPU memory space to host the 

face detection, face key-point extraction and GAN models, up to 5 GB. It is highly 

recommended that the device on which the solution is deployed has an Nvidia GPU to speed 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   79 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

up the anonymisation process. This tool has been implemented in a Nvidia GeForce GTX 1070 

with CUDA 11.3 and python3.8. 

5.2.2.3 Functional requirements 

The main functional requirement of this application is that it allows to anonymize the faces of 

the possible subjects appearing in the images taken in the field in real time, so that it is 

possible to send the video stream directly anonymized if required to avoid problems with 

GDPR legislation. 

A second functional requirement is to add a run mode in which the anonymized output images 

maintain as realistic an appearance as possible. This option would be used in case of needing 

to anonymize images that are going to be part of a dataset, to avoid that the dataset contains 

bias due to the introduction of artifacts in the anonymized faces. 

5.2.2.4 Data models 

This application does not store data in any format, it takes a video stream as input and 

provides one or more video streams as output, in mp4/avi format, or individual frames, in 

jpg/png. 

5.2.2.5 Application Programming Interfaces (APIs) 

The definition of a final interface to interact with the tool is pending the implementation of 

the tool as an inference service in the FlexiGroBots AI platform. Currently, the software is 

executed as a python script inside a docker container. 

5.2.2.6 Graphical User Interfaces (GUIs) 

There is no GUI beyond the display of the output videos themselves. 

5.2.2.7 Installation 

To install this application and be able to run it, it is only necessary to have the required 

permissions in the repository of the project to download the app docker image, as following: 

docker pull ghcr.io/flexigrobots-h2020/anonymization-tool 
 

It is possible to check the possible input parameters of the application script through the 

following command: 

docker run -it anonymization-tool --help 
 

Once you have checked that the image is running properly and the possible input parameters 

are known, delete the previous container and run it again with the desired parameters. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   80 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

5.2.2.8 Prototype availability within FlexiGroBots 

The prototype of this application is available in the project’s GitHub repository by downloading 

and executing the docker image named anonymization-tool. 

Access to the code repository is private, only members of the repository are allowed. People 

linked to the project who are not members of the repository will be able to access on demand. 

The link to the private repository is: https://github.com/FlexiGroBots-H2020/anonymization-

tool. 

5.2.2.9 Release planning 

User story ID User story Priority Story 
points 

CAS_AT_US_01 Evaluate and test in field conditions (Pilots 1, 2 

and 3) 

High 3 

CAS_AT_US_02 Upload the application as AI platform inference 
service and prepare deployment for required 
devices 

Medium 3 

Table 10 User stories for anonymization 

5.2.3 Automatic dataset generation 

The Automatic dataset generation common application is introduced for the first time in this 

document, as it was not presented in the previous deliverable, D3.1. The need to develop this 

tool has arisen due to the lack of availability labelled images to train AI computer vision models 

in agricultural context. 

As it is well known by people involved in the field of artificial intelligence, in general, and more 

specifically in the field of computer vision, the lack of labelled datasets is always one of the 

main hurdles to overcome when approaching a project.  

FlexiGroBots is no exception, there is a need for very specific datasets for certain tasks, and 

although it is sometimes possible to find public datasets or manually label data collected in 

pilots, the reality is that it is always a tedious and complicated job. In the worst cases, it 

becomes impossible to find or produce enough data to be able to train a detection model, as 

was the case for the use case of tractor detection from aerial image, introduced in section 

5.1.4. 

The solution proposed with this common application allows to automatically generate tagged 

datasets of the desired concept. The pipeline developed is reflected in Figure 31. 

https://github.com/FlexiGroBots-H2020/anonymization-tool
https://github.com/FlexiGroBots-H2020/anonymization-tool


 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   81 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 
Figure 31 ADGT pipeline description 

The defined pipeline includes 3 steps and implements 4 open-source repositories along with 

a multitude of proprietary developments. The resulting tool takes the field of automatic image 

labelling beyond the current state of the art. 

The first step of the pipeline is the collection of unlabelled raw images, and for this purpose 

two different options have been developed. The first, the most direct and simple, is to indicate 

the path to a folder containing raw images or videos of the concept to be collected in the 

resulting dataset. The second is to use the open-source Clip-retrieval tool, [47], to search for 

images of the desired concept in the public LAION5b data lake [48]. The search can be 

performed by providing example images or by describing the desired scene. Figure 32 reflects 

these two options. Once similar images have been retrieved, the img2dataset [49] software is 

included to download the appropriate images from the source. 

 
Figure 32. Dataset request input options for the first step: raw data collection 

The second step of the defined pipeline is the automatic labelling of the images obtained in 

the previous step. Detic [34], a detection and segmentation model already introduced in one 

of the previous applications, 5.1.2, is implemented to carry out this labelling. This model is 

ideal for this task, since as explained in the referenced point, Detic is pre-trained in more than 

21.000 different classes and is also capable of zero-shot classification for concepts not 

included among those classes. A sample of images from the LAION5b data lake tagged using 

Detic is shown in Figure 33. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   82 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 
Figure 33 Images automatically tagged with Detic [34], extracted from the LAION-5b [48] data lake 

The third and last step is the visualization of the generated dataset, in order to check whether 

the result meets the quality required to train a detection model. For this purpose, the 

functionalities offered by the open-source FiftyOne [50] library are used, which, as shown in 

Figure 34, allows visualizing the results in a browser tab and interacting with the classes and 

datasets of the generated dataset. 

 
Figure 34. FiftyOne GUI for generated dataset visualization 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   83 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

As an example of the real use of this application, more information about the dataset created 

to complete tractor detection task can be found in Annex A. 

The added value of this application is remarkable, introducing a new source of data to be 

considered when dealing with the complex process of training neural models for detection 

and segmentation tasks, since in addition to the bounding boxes of the detected objects, the 

segmentation masks are also extracted from them. 

5.2.3.1 Implemented functionalities  

The current implementation of the tool offers the following functionalities: 

• Generation of labelled datasets from raw images and videos collected in the pilots.   

• Image retrieval and labelled datasets generation based on similar unlabelled image 

examples.  

• Image retrieval and labelled datasets generation based on a textual description of the 

desired concept. 

• Online visualization of the generated dataset. 

• Output format of the dataset ready to be used as input to train detection models, YOLO 

format. 

5.2.3.2 Technical requirements 

It is necessary to have sufficient disk space to be able to download and run the docker image, 

15 GB, also enough GPU memory to host the labelling model, it requires 8 GB. It is highly 

recommended to have a Nvidia GPU to speed up the auto-labelling process of the data. This 

tool has been implemented in a Nvidia GeForce GTX 1070 with CUDA 11.3 and python3.8. 

5.2.3.3 Functional requirements 

Unlike the other applications, the functional requirements of this tool are not directly defined 

by the needs expressed by the agricultural stakeholders. In this case, the functional 

requirements are derived from the internal need for more labelled images to train AI models. 

Therefore, the main functional requirement is that the tool allows to obtain annotated images 

of concepts related to the agricultural context. The tool must be broad spectrum, i.e., be able 

to generate datasets of a wide number of different concepts within the project context, as 

well as fruits or vehicles. In addition, the tool should be easy to use and allow a user-friendly 

visualization of the results. 

5.2.3.4 Data models 

This application generates a structure of folders containing the data resulting from each new 

dataset request. On the one hand, unlabelled collected images are stored, and on the other 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   84 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

hand, images and annotation files are stored and divided into training, evaluation, and test 

sets. The folder architecture is shown in Figure 35.  

 
Figure 35 DGT output data architecture 

5.2.3.5 Application Programming Interfaces (APIs) 

The definition of a final interface to interact with the tool is pending the implementation of 

the tool as an inference service in the FlexiGroBots AI platform. Currently, the software is 

executed as a python script inside a docker container. 

5.2.3.6 Graphical User Interfaces (GUIs) 

In addition to the dataset files that remain in the folder from which the application is launched, 

a browser tab opens with a GUI that allows you to interact with some meta-parameters of the 

generated dataset. This interface is reflected in Figure 34. 

5.2.3.7 Installation 

To install this application and be able to run it, it is only necessary to have the required 

permissions in the repository of the project to download the app docker image, as following: 

docker pull ghcr.io/flexigrobots-h2020/dataset-generation-tool 
 

It is possible to check the possible input parameters of the application script through the 

following command: 

docker run -it dataset-generation-tool --help 
 

Once you have checked that the image is running properly and the possible input parameters 

are known, delete the previous container and run it again with the desired parameters. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   85 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

5.2.3.8 Prototype availability within FlexiGroBots 

The prototype of this application is available in the project's GitHub repository by downloading 

and executing the docker image named dataset-generation-tool. 

Access to the code repository is private, only members of the repository are allowed. People 

linked to the project who are not members of the repository will be able to access on demand. 

The link to the private repository is: https://github.com/FlexiGroBots-H2020/dataset-

generation-tool. 

5.2.3.9 Release planning 

User story ID User story Priority Story 
points 

CAS_DGT_US_01 Guidance on dataset generation (Pilots 1, 2 and 3) High 3 

CAS_DGT_US_02 Upload the application as AI platform inference 
service and prepare deployment for required 
devices 

Medium 3 

Table 11 User stories for automatic dataset generation 

5.3 Generalization 

As introduced in D3.1, this third group of applications is oriented to generalize the tools 

developed within the context of each pilot, so that they are applicable to general use cases 

within the field of agriculture, or at least can be used as a starting point to develop new 

solutions. Also included in this section are tools that solve generic problems when deploying 

solutions for the tasks of (i) disease detection, (ii) pest detection, and (iii) weed detection.  

The fact that these applications are intended to generalize the applications developed in the 

pilots means that their implementation is subject to these applications being in a final phase 

of their development; therefore, it is not possible to count on very advanced common 

applications at this point in the project.  

5.3.1 Disease detection 

The definition of the task and the approach reflected in deliverable D3.1 remain in force. 

Briefly recapitulating, a model for detection of botrytis disease in grapes continues to be 

developed within the context of Pilot 1, and the idea is to generalize this architecture and the 

defined pipeline, to be applicable to other fruits and diseases once the implementation is 

completed.  

https://github.com/FlexiGroBots-H2020/dataset-generation-tool
https://github.com/FlexiGroBots-H2020/dataset-generation-tool


 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   86 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

For this reason, efforts up to this point have been focused on offering general functionalities 

that can be used both by the pilots of this project and other possible solutions in the field of 

agriculture when detecting diseases affecting crops or fruits. 

The tool implemented as a result of task T3.4 allows detecting and segmenting fruits as a 

previous step to the detection of diseases in them. In this way, using the segmented image 

with the extracted background as input to the disease classification model, it’s possible to 

minimize the noise introduced to the model and facilitates its training by reducing the 

complexity of the entry space. Several examples with blueberries and grapes can be seen in 

Figure 36 and Figure 37 respectively. 

The main component of the tool is Detic [34], which was introduced in previous points, 5.1.2, 

is a DETR-style detector able to make inference even with unspecified classes during the 

training phase thanks to the introduction of CLIP. For more details visit the referenced section 

and the included citations. 

The added value of this solution is to reduce the complexity of the problem before facing the 

disease detection stage, which is always desirable to maximize the chances of obtaining good 

results. 

 

  
Figure 36 Blueberries detection and segmentation with FlexiGroBots’ common app 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   87 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

  
Figure 37 Grapes detection and segmentation with FlexiGroBots’ common app 

5.3.1.1 Implemented functionalities  

The current implementation of the tool offers the following functionalities: 

• Multiple fruits detection and segmentation. 

• Background extraction. 

• Fruit counting. 

5.3.1.2 Technical requirements 

It is necessary to have sufficient disk space to be able to download and run the docker image, 

15 GB, also enough ram to host Detic model, 6 GB. It is highly recommended to have a Nvidia 

GPU to speed up the detection and segmentation process of the data. This tool has been 

implemented in a Nvidia GeForce GTX 1070 with CUDA 11.3 and python3.8. The fps ratio 

obtained in under this scenario its approximately of 1, highly depending on the number of 

objects detected in the image. 

5.3.1.3 Functional requirements 

The nominal operation of this tool should allow to introduce image or video as input and to 

obtain the processed result with the detections and the classification of the state of the fruit 

in a relatively short period of time, without the need to reach real time.  



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   88 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

In any case, the result of the analysis carried out should be recorded in one way or another, 

either in the same output images or in a textual message, but in case of detecting diseases in 

the fruit it would be desirable to send an alert to the MCC with the position of the event to 

carry out corrective actions. 

5.3.1.4 Data models 

This application does not store data in any format, it takes a video stream as input and 

provides one or more video streams as output, in mp4/avi format, or individual frames, in 

jpg/png. 

5.3.1.5 Application Programming Interfaces (APIs) 

The definition of a final interface to interact with the tool is pending the implementation of 

the tool as an inference service in the FlexiGroBots AI platform. Currently, the software is 

executed as a python script inside a docker container. 

5.3.1.6 Graphical User Interfaces (GUIs) 

There is no GUI beyond the display of the output images/videos themselves. 

5.3.1.7 Installation 

To install this application and be able to run it, it is only necessary to have the required 

permissions in the repository of the project to download the app docker image, as following: 

docker pull ghcr.io/flexigrobots-h2020/disease-detection-tool 
 

It is possible to check the possible input parameters of the application script through the 

following command: 

docker run -it disease-detection-tool --help 
 

Once you have checked that the image is running properly and the possible input parameters 

are known, delete the previous container and run it again with the desired parameters.  

5.3.1.8 Prototype availability within FlexiGroBots 

The prototype of this application is available in the project’s GitHub repository by downloading 

and executing the docker image named disease-detection-tool. 

Access to the code repository is private, only members of the repository are allowed. People 

linked to the project who are not members of the repository will be able to access on demand. 

The link to the private repository is: https://github.com/FlexiGroBots-H2020/fruit-disease-

detection-tool. 

https://github.com/FlexiGroBots-H2020/fruit-disease-detection-tool
https://github.com/FlexiGroBots-H2020/fruit-disease-detection-tool


 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   89 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

5.3.1.9 Release planning 

User story ID User story Priority Story 
points 

CAS_GDIS_US_01 Check the software module and requirements for 

Pilot 1’s Botrytis detection 

High 5 

CAS_GDIS_US_02 Build domain adaptation and/or transfer learning 

module for allowing re-training of the Botrytis 

model 

High 13 

CAS_GDIS_US_03 Evaluate and test in field conditions with data 

from Pilot 3 

Medium 3 

CAS_GDIS_US_04 Upload the application to the AI platform and 
prepare deployment for required devices 

Medium 3 

Table 12 User stories for disease detection 

5.3.2 Pest detection 

Analogous to the point 5.3.1, the description of this tool was included in document D3.1, and 

its progress is subject to that of the tool developed in the context of Pilot 2 to detect the pests 

of "meligethes aeneuss" in rapeseed plants. 

After having studied and tested different alternatives to face the problem, it has been 

concluded together with the stakeholders of Pilot 2, that the most viable approach is to make 

an estimation of the affection of the crops according to the number of insects detected in 

yellow sticky traps placed among the crops. 

One of the favorable points to reach this conclusion is that these traps can be prepared with 

different pheromones to attract different species of insects, thus being a generalizable 

solution for other pests and crops.  

Another reason for this decision is that after taking a set of hundreds of images in the field, 

even in cases where the insects are not blown away by the air generated by the UAV taking 

the image, it is very difficult to locate the insects on the crops, making it impossible to obtain 

a dataset with enough samples to train a detector. Figure 38 shows how complex the problem 

would be posed in this way. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   90 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 
Figure 38 Pilot 2 raw image example for “meligethes aeneuss” detection 

Therefore, the application proposed at this point of the project implements Detic [34] as 

model to segment the traps and detect the insects, but in future iterations it is intended to 

include models of concrete use to improve the performance obtained in the detection and 

classification of trapped insects. This requires specific datasets for the insect species of 

interest. Figure 39 shows some of the results that can be obtained using the implemented 

tool. 

  



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   91 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

  
Figure 39 Trap segmentation and insect detection with FlexiGroBots’ common app 

A visual description of the pipeline defined at this point in the project can be seen in Figure 

40. 

 
Figure 40 Pest detection pipeline description 

The added value of this solution is that based on field experimentation, conclusions have been 

drawn that lead to discarding other alternatives and implementing a two-step solution, yellow 

trap segmentation and insect detection/counting, which is generally applicable to the generic 

pest detection in crops problem.  

5.3.2.1 Implemented functionalities  

The current implementation of the tool offers the following functionalities: 

• Multiple types of insect detection and segmentation. Also, generic insect class. 

• Yellow trap segmentation and background extraction. 

• Insect counting. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   92 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

5.3.2.2 Technical requirements 

It is necessary to have sufficient disk space to be able to download and run the docker image, 

15 GB, also enough ram to host Detic model, 6 GB. It is highly recommended to have a Nvidia 

GPU to speed up the detection and segmentation process of the data. This tool has been 

implemented in a Nvidia GeForce GTX 1070 with CUDA 11.3 and python3.8. The fps ratio 

obtained in under this scenario its approximately of 1, highly depending on the number of 

objects detected in the image. 

5.3.2.3 Functional requirements 

The nominal operation of this tool should allow to introduce image or video as input and to 

obtain the processed result with the detections and the classification of the state of the pest 

presence in a relatively short period of time, without the need to reach real time. 

In any case, the result of the analysis carried out should be recorded in one way or another, 

either in the same output images or in a textual message, but in case of detecting pest in the 

crop it would be desirable to send an alert to the MCC with the position of the event to carry 

out corrective actions. 

5.3.2.4 Data models 

This application does not store data in any format, it takes a video stream as input and 

provides one or more video streams as output, in mp4/avi format, or individual frames, in 

jpg/png. 

5.3.2.5 Application Programming Interfaces (APIs) 

The definition of a final interface to interact with the tool is pending the implementation of 

the tool as an inference service in the FlexiGroBots AI platform. Currently, the software is 

executed as a python script inside a docker container. 

5.3.2.6 Graphical User Interfaces (GUIs) 

There is no GUI beyond the display of the output images/videos themselves. 

5.3.2.7 Installation 

To install this application and be able to run it, it is only necessary to have the required 

permissions in the repository of the project to download the app docker image, as following: 

docker pull ghcr.io/flexigrobots-h2020/pest-detection-tool 
 

It is possible to check the possible input parameters of the application script through the 

following command: 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   93 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

docker run -it pest-detection-tool --help 
 

Once you have checked that the image is running properly and the possible input parameters 

are known, delete the previous container and run it again with the desired parameters. 

5.3.2.8 Prototype availability within FlexiGroBots 

The prototype of this application is available in the project's GitHub repository by downloading 

and executing the docker image named pest-detection-tool. 

Access to the code repository is private, only members of the repository are allowed. People 

linked to the project who are not members of the repository will be able to access on demand. 

The link to the private repository is: https://github.com/FlexiGroBots-H2020/pest-detection-

tool. 

5.3.2.9 Release planning 

User story ID User story Priority Story 
points 

CAS_GINS_US_03 Evaluate and test in field conditions with data 

from Pilot 3 

Medium 5 

CAS_GINS_US_04 Upload the application to the AI platform and 
prepare deployment for required devices 

Medium 3 

CAS_GINS_US_05 Obtain dataset of insects trapped in yellow traps High 5 

CAS_GINS_US_06 Implement a generic grading solution for various 
types of insects 

High 13 

Table 13 User stories for pest detection 

5.3.3 Weed detection 

Analogous to points 5.3.1 and 5.3.2, the description of this tool was included in document 

D3.1, and its progress is subject to that of the tool developed in the context of Pilot 3 to detect 

weeds in blueberry farms. 

A similar approach to the other applications of the generalization cluster has been tried to be 

implemented in this use case, using Detic as detector and segmentator, but the model does 

not offer good results for this application. Figure 41 shows a case processed with the tool, in 

which it has not been possible to differentiate correctly between crop and weeds, obtaining 

as a result a segmentation that loses elements and misclassified it. The dataset [51] used to 

carry out this test presents images like the one in the figure, with ground truth segmentation 

masks and bounding boxes. 

https://github.com/FlexiGroBots-H2020/pest-detection-tool
https://github.com/FlexiGroBots-H2020/pest-detection-tool


 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   94 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

  
Figure 41 Weed/Crop segmentation with FlexiGroBots’ common app on [51] 

Given the poor results obtained, the development of a final solution for this application is 

pending for the last period of the project, and we will try to provide a generic solution based 

on the proposal deployed in Pilot 3. 

5.3.3.1 Implemented functionalities  

No functionalities implemented yet, waiting for the output of task T6.2. 

5.3.3.2 Technical requirements 

The technical requirements will be better defined once a prototype of the solution is reached, 

for the moment it can be assumed that an Nvidia GPU will be highly recommended to 

accelerate the execution of the models. 

5.3.3.3 Functional requirements 

The nominal operation of this tool should allow to introduce image or video as input and to 

obtain the processed result with the detections and the classification of the weed/crop 

presence in a relatively short period of time, without the need to reach real time.  

In any case, the result of the analysis carried out should be recorded in one way or another, 

either in the same output images or in a textual message, but in case of detecting weeds in 

the crop it would be desirable to send an alert to the MCC, with the position of the event to 

carry out corrective actions. 

5.3.3.4 Data models 

Predictably, this application will not store data in any format, but takes a video or individual 

images as input and provides processed video or images as output. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   95 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

5.3.3.5 Application Programming Interfaces (APIs) 

The definition of an interface to interact with the tool is pending on the develop of the tool 

and its implementation as an inference service in the FlexiGroBots AI platform. 

5.3.3.6 Graphical User Interfaces (GUIs) 

There will foreseeably be no graphical user interface beyond the display of the output 

images/videos themselves. 

5.3.3.7 Installation 

Not yet defined, pending the development of the tool. 

5.3.3.8 Prototype availability within FlexiGroBots 

There is no prototype ready for general use by FlexiGroBots project stakeholders yet. 

5.3.3.9 Release planning 

User story ID User story Priority Story 
points 

CAS_GWEED_US_01 Check the software module and requirements 

for Pilot 3’s weed detection model 

High 5 

CAS_GWEED_US_02 Extend the weed detection module with 

customization features so it can be reused in 

other domains 

High 13 

CAS_GWEED_US_03 Evaluate and test in field conditions with data 

from Pilot 1 

Medium 3 

CAS_GWEED_US_04 Upload the application to the AI platform and 

prepare deployment for required devices 

Medium 3 

Table 14 User stories for weed detection 

  



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   96 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

6 Mission Control Centre 

Mission Control Centre (MCC) is responsible for multi-robot operations.  During the second 

project year some revisions to original MCC concept were made based on observations from 

project’s pilots. The main topics were: 

• The pilots’ robots are autonomous devices that need little control from the user 

during the execution of tasks. They do not need additional low-level control. The robot 

systems consist of the full stack of components. They do have their own specific task 

planning tools and operation control systems.  Therefore, a loosely coupled fleet 

control approach was chosen. It means that only high-level commands such as pause, 

resume, change task are needed and that the planning of individual robot’s task is 

done by robot specific tools. 

• The robots’ control systems are more advanced than assumed meaning that they have 

file systems and that their tasks are described as files. The firmware operations and 

task dispatchers can be replaced with more normal file operations. 

• The use cases were consisting of sequential robot or robot fleet tasks completed with 

analysis and design tasks. It is more like a workflow that must be completed. Field 

operations are either producing data for next steps or dependent on the data from 

previous steps. In some cases, these steps can involve external services or decisions 

of the farmers or the robot operators. In order to specify, design, and manage such 

system, the mission control centre has to manage these other types of tasks and data 

transfers between them.  

New definitions were created: 

• Definition of a mission workflow: Mission workflow is a collection of actions to be done 

for achieving farm level objectives. Mission workflow may have several phases that 

consist of single robot or fleet tasks, use of AI or data services, or user tasks for decision 

making or planning of next steps. 

• Definition of a fleet task: Fleet task is an activity at the field done simultaneously by a 

set of heterogenous, collaborating robots. 

• External service: External service is a service that processes data given as an input to 

the mission or created by a phase of the mission, and that produces new data to be 

used in a mission. 

•  User tasks: User task is a task performed by a mission stakeholder for making 

decisions, planning new actions, or preparing data for next phases. 

The architecture of MCC (Figure 42) was redesigned based on the new approach. The main 

idea is to separate the control and coordination of actions into three levels. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   97 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

• The lowest level is the field robot system that includes the robot control that is done 

using the robot or robot swarm controller11. They are specific to robots and robots’ 

manufactures and as our approach is to focus on fleet level control it is out of scope of 

the MCC. The robot or robot swarm controller must, however, be able to communicate 

with MCC and robot tasks must be aware of the fleet in some cases.  

• The middle level is the fleet management level that coordinates the operation of the 

fleet. 

• The upmost level is the mission management level that has responsibility for the 

mission workflow planning, coordination, and communication with external farm 

management system. 

 
Figure 42. Architecture diagram of Mission Control Centre 

 
11 Robot swarm is a collection of robots controlled by a single controller. In the MCC context the robot swarm is 
considered equal to robot as all the communication takes place through the controller.  



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   98 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

The control and coordination techniques follow the three levels. The robot system level 

everything is based on robot specific techniques not covered here. In the fleet and mission 

level we use publish-subscribe approaches.  

At the fleet level communication is based on MQTT protocol and command and status 

payloads specified in the FlexiGroBots projects. Status and command messages are based on 

Ultralight protocol. Every actor in the fleet operation publishes their messages in MQTT broker 

and subscribe to messages they need. 

At the mission workflow level the communication is based in IDSA data space, shared data 

storages or other data transfer protocol depending on the deployment scenario.  The 

reference implementation will support the data space approach. Different entities in each 

phase of the mission publish the data for selected receivers and subscribe to data they need 

from other entities.  

Mission workflow description (Mission File) is the key element in the system. It is a JSON 

description of the mission containing the farm data, communication system configurations, 

data elements, phases with robot fleets, services, and user tasks. Mission File is described in 

more detail in section 6.2.3. 

Components and deployment 

The developed architecture supports various deployment scenarios. Different use cases have 

different requirements and the MCC system must fulfil them. For example, the location of the 

farm may be such that the Internet connections do not allow even near real-time control 

features and the fleet controller, fleet supervisor, MQTT messaging, and robot control systems 

must be deployed into local computing environment. Another possible factor may be the 

ownership of robots and devices. The architecture supports subcontracting-based robot fleet 

tasks and that may require that fleet control and supervision is done using robot operator’s 

systems. Description of the components and their deployment options in different types of 

mission flows is described in Table 15 and deployment example in Figure 43. 

Component Description Deployment scenarios 

Mission workflow 
planner 

A tool for creating, editing, and 
managing mission file 

A service in a cloud. Hosted by 

FlexiGroBots platform or other 

service provider 

Mission workflow 
controller 

A too for managing the mission 
workflow execution. Controls the 
acceptance and launch of phases 
and manages the data transfers 

A service in a cloud. Hosted by 
FlexiGroBots platform or other 
service provider 

Mission reporter A tool for creating a mission report 
for a farm management 
information system 

A service in a cloud. Hosted by 
FlexiGroBots platform or other 
service provider 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   99 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Component Description Deployment scenarios 

Mission repository Data storage for mission files and 
report data 

A service in a cloud. Hosted by 
FlexiGroBots platform or other 
service provider 

Mission management 
GUI 

REACT interface to manage 
mission manager tools 

Web application. 

Fleet controller A tool for controlling the fleet of 
robots. Control operations are 
starting, stopping, and changing 
robot tasks, and pausing and 
resuming the active task 

Stand-alone application with UI, 
web application and service, 
integrated service to farm 
management systems, or extension 
to QGroundControl software.  

Fleet supervisor A tool for visualising the robot 
fleet status 

Stand-alone application with UI, 
web application and service, 
integrated service to farm 
management systems, or extension 
to QGroundControl software. 

MQTT broker Service providing MQTT message 
publication and subscriptions. 
Existing component 

A service in server or local PC. 

MCC communication A component providing MCC 
messaging capabilities for robot 
systems and Mission File interface 

Tool is integrated to fleet controller, 
fleet supervisor, and robot control 
system.   

Robot task planner Robot task planning tools manage 
a robot or a robot swarm 
considering each robot type 
characteristics, and they are 
developed in pilots. The resulting 
plans for each robot must be 
linked to mission description file. 

The UGV robot route planning tool 
is developed as a part of MCC (at 
the field robot system level) as 
route planning is a general 
component needed in all UGVs. 

Robot route planner is integrated to 

robot task planner. Robot task 

planner can be a stand-alone 

application of web service. Run-time 

replanning of robot’s route is 

considered, but possible 

implementations are done in pilots 

and not necessarily using the fleet 

route planner.  

Table 15 Main parts of MCC and their deployment options 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   100 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 
Figure 43. MCC deployment example 

6.1 Implemented functionalities  

The implemented functionalities are described in Table 16 (functionalities described in D2.3) 

and Table 17 Table 16 (new functionalities for managing mission workflow and phases). In 

these tables we have described the components involved and overall status of 

implementations. It must be noted that some earlier user stories have currently slightly 

changed interpretations. As the implementation planning is currently focusing on 

development of architecture components the status is component implementation is also 

given in Table 18. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   101 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

User story ID User story Components involved Comment 

MCC_US_01 Create a simulation 
environment for 
development 
purposes 

Fleet controller, MCC 

communications, MQTT 

broker, robot simulators 

A python fleet controller and 
robot simulator with MQTT 
communication has been 
developed. There are also 
simulators for drones and 
autonomous tractor. 

MCC_US_02 Create controllers 
with ground robots in 
pilot 1 to send 
missions 

Fleet controller data space 
(for creation of fleet 
management 
configuration) 

Ground robot controllers and 
robot task plan management 
are pilot-specific 
implementations. In pilot 1 
robot specific controllers are 
used and they are on board 
the robots. 

MCC_US_03 Create controllers 
with ground robots in 
pilot 2 to send 
missions 

Fleet controller, data 
space (for creation of fleet 
management 
configuration) 

Ground robot controllers and 
robot task plan management 
are pilot-specific 
implementations. In pilot2 
ISOBUS task controller and 
EFDI communication, 
QGroundControl and MAVIC 
drone plans and Weeding 
robot specific controller are 
used.   

MCC_US_04 Create controllers 
with ground robots in 
pilot 3 to send 
missions 

Fleet controller, data 
space 

Ground robot controllers and 
robot task plan management 
are pilot-specific 
implementations. Robot-
specific controllers are used in 
pilot 3. 

MCC_US_05 Create supervisors 
with ground robots in 
pilot 1 

Fleet supervisor and 
controller, MCC 
communications, MQTT 
broker 

PoC fleet controller has been 
developed. It implements MCC 
status and command 
messaging and fleet status 
visualisation interface. 

MCC_US_06 Create supervisors 
with ground robots in 
pilot 2 

Fleet supervisor, fleet 
controller, MCC 
communications, MQTT 
broker 

MCC_US_07 Create supervisors 
with ground robots in 
pilot 3 

Fleet supervisor, fleet 
controller, MCC 
communications, MQTT 
broker 

MCC_US_08 Implement planner to 
support missions with 
multiple robots 

Mission planner, robot 

task planner 

Initial mission planner exists. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   102 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

User story ID User story Components involved Comment 

MCC_US_09 Implement events 
processing and 
alarms notification 

Fleet controller Not implemented yet. 

MCC_US_10 Implement Data 
Space connector 

Data Space Connector, 

broker, and DAPS  

IDSA data space with 
connectors, broker and DAPS 
has been developed and 
tested. There are two 
deployments (in pilot 2 and 
FlexiGroBots platform)  

MCC_US_11 Implement MQTT 
communication 
extension for QGC 

Fleet supervisor and 
controller 

MQTT extension to QGC has 
been developed.  

Table 16 Mapping of functional requirements from D2.3 to MCC components 

User story ID User story Components involved Description 

MCC_US_12 Create a model for 
complete mission 
workflow and its 
phases 

Mission workflow planner Mission file specification as a 
JSON schema has been 
developed.  

MCC_US_13 Support multi-partner 
execution of mission 

Communication between 
all the components. Data 
space.  

A model on how different 
partners communicate and 
exchange confidential data 
across data space has been 
created.  

MCC_US_14 It should be possible 
to share data created 
in robot missions with 
AI development 
platform 

Data space connectors, 
mission manager 

A model on how the data 
sharing and data management 
during a mission has been 
developed. MCC architecture 
and components support the 
model. 

Table 17 Mapping of new user stories to MCC components 

Component Implementation status Comments 

Mission workflow planner New component JSON-schema 
for mission file has been 
designed and tested using 
REACT test environment 

Planner will be based on existing 

JSON server and a REACT user 

interface. Interfacing to data 

sources related to robot operators 

are under work.   

Mission workflow controller New component. Specification 
exists 

- 

Mission reporter New component. Specification 
exists 

- 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   103 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Component Implementation status Comments 

Mission repository Repository is standard server 
data storage system 

- 

Mission management GUI New component. Initial 
specification exists 

GUI will be based on REACT 
technology. 

Data space interface Extension to IDSA connect. 
Interface to data space from 
MCC have been developed 
based on IDSA components. 
Infrastructure has been tested 

Interface is based on existing 
components, but it has need 
additions related to security, 
notifications, and to use guidelines. 

Fleet controller Extension (new features) to 
QGC. Python based fleet 
controller with MQTT and 
Mission File interfaces has been 
developed 

Current components implement the 
MCC messaging capabilities, 
visualisation, and control options. 

Fleet controller and supervisor will 
be integrated both to 
QGroundControl and Farm 
Management System as a web 
application. 

Fleet supervisor Extension (new data to be 
displayed) to QGC Python 
based fleet supervisor and 
initial QGroundControl 
extension have been 
developed. Both have MQTT 
interfaces 

MQTT broker MQTT is an existing component Current deployment is using Eclipse 

Mosquito MQTT broker. 

Different MQTT brokers can be used 

in the execution of fleet operations.  

MCC communication New component. Reference 
implementation of MQTT and 
MissionFile interface have been 
done 

Implementation is based on Python3 
JSON and paho.mqtt.client libraries. 

Robot task planner New components. Matlab 
version is available and comes 
from previous projects 

Work is underway for having a 

communication based in IDSA data 

space to get maps generated by the 

UAVs and to share the plans 

generated to other parts of the MCC 

architecture. In addition, 

modifications are being made to 

properly adapt the planner 

behaviour to the new scenarios. 

Table 18 Implementation status of main MCC components in FlexiGroBots platform v1 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   104 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

6.2 Requirements 

6.2.1 Technical requirements 

The Mission Control Centre itself is technically relatively simple software. The technical 

requirements depend heavily on the intended use and deployment scenarios, so it is difficult 

to give exact general numbers. The numbers and estimations here are based on the reference 

implementations developed in the project and project’s use cases. These numbers should be 

considered initial due to current maturity level of implementations. 

• The mission management will be a web service deployed as Docker container. The 

technical requirements for execution environment depend heavily on the number of 

users. However, the computation load caused by individual user is small. 

• The fleet management will be developed as an extension to QGroundControl (QGC) 

software. The additional load caused by the extensions will be negligible, so the initial 

requirements of QGC given in D3.1 will be sufficient. 

As the data transfers will be done using the IDSA data space solution, the companies that want 

to be part of the business ecosystem, must have data space connectors. The companies must 

have at least a server connected to Internet with fixed IP address. The companies must also 

have certified IDSA connectors and identities. Technical requirements for IDSA connectivity 

platform basically the same as for Docker virtualisation: 

• 64-bit kernel and CPU support for virtualization. 

• KVM virtualization support. Follow the KVM virtualization support instructions to 

check if the KVM kernel modules are enabled and how to provide access to the KVM 

device. 

• QEMU must be version 5.2 or newer. We recommend upgrading to the latest version. 

• systemd init system. 

• Gnome, KDE, or MATE Desktop environment. 

• For many Linux distros, the Gnome environment does not support tray icons. To add 

support for tray icons, you need to install a Gnome extension. For example, 

AppIndicator. 

• At least 4 GB of RAM. 

• Enable configuring ID mapping in user namespaces, see File sharing. 

The communication between fleet management and robot systems requires a MQTT broker 

and a computer hosting it.  In practice almost any server or computer fulfils them. Even a 

Raspberry Pi can run a MQTT broker. 

To run the robot task planner, it is necessary to have one of the latest Matlab 7.13 (R2011b) 

version installed. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   105 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

The robot task planner has been successfully run-on Windows XP, Windows 7, Linux, and Mac 

OS systems. The only problems detected when running the code on these different operating 

systems were related to the save path of the data and in particular to the characters '/' and 

'/'. If you want to run the scheduler on a non-Windows system, you may need to tweak the 

data save functions to support the new system's paths. 

If you are going to run the planner via interface or intend to develop part of it, you need to 

install a version of Matlab that includes the GUIDE utility (Matlab interface development tool). 

If the planner is to be exported to C or C++, either directly to source code or to a static library, 

the Matlab Coder utility must be installed (Matlab versions higher than 7.13). 

To include the code automatically generated by Matlab Coder in a C/C++ project, it is enough 

to have installed a C/C++ compiler supported by Matlab. These compilers can be consulted in 

the following link for Matlab version R2012a: 

http://www.mathworks.es/support/compilers/R2012a/win32.html 

Summary information on how the robot task planner works has been included in Annex B of 

this document. 

6.2.2 Functional requirements 

The functional requirements have evolved during the implementation design of the MCC. The 

original user stories were vehicles’ provision, mission plan creation, mission execution, and 

mission supervision. The mission concept was extended to more holistic definition that is 

based on farmer’s objectives in managing his crops. The main user stories were reformulated 

as mission planning, mission control, mission phase management (robot fleet, service, and 

user tasks), and mission reporting. These new user stories have been transformed to the 

requirements of the implementation components and the overall functionality of the system 

is built on top of two publish-subscribe systems, i.e., IDSA data space and MQTT. The next 

chapter will list the main functional requirements of each subsystem. 

6.2.2.1 Mission workflow planner 

The functional requirements of the mission workflow planner are: 

• the creation of mission plan as a mission file in JSON format 

• the mission file management (create, read, write, delete) operations using the mission 

repository 

• the mission planner must be accessible by multiple operators across Internet 

• mission planner must keep the plan confidential. 

6.2.2.2 Mission workflow controller 

The functional requirements of the mission workflow controller are: 

http://www.mathworks.es/support/compilers/R2012a/win32.html


 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   106 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

• keeping record of the mission phase statuses 

• activation of the phases (starting execution) 

• initiation or execution of data transfers between the mission partners 

• activation of the mission plan changes with the mission planner 

• acceptance of the phase results 

• ending of a phase 

• ending of the mission and activation of mission reporting 

• the mission controller is accessible by a mission owner (typically a farmer). 

6.2.2.3 Mission reporter 

The functional requirements of mission reporter are: 

• collection and management of the mission data 

• adding/editing of the mission description 

• initiation of the data transfer to target farm management information system 

• the mission reporter is accessible to mission owner. 

6.2.2.4 Mission repository 

Mission repository is a data repository accessible by mission management tools. Typical 

contents of mission repository are mission files, data collected and created by robots and 

device, and data created in missions’ services. 

Repository must be accessible by the Data Space connector. 

6.2.2.5 Fleet supervisor 

The functional requirements of fleet supervisor are: 

• to be able to connect to MQTT broker and to subscribe to MQTT for MCC status 

messages 

• to visualize the status and locations of the robots that participate to the fleet task. 

6.2.2.6 Fleet controller 

The functional requirements of fleet controller are: 

• to be able to connect to MQTT broker and to send to MCC command messages 

• to be able to send Pause, Resume, Start task, Stop task and Change task messages 

either to all or selected set of robots. In change status message the controller has to 

select the identifier of new task. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   107 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

6.2.2.7 Robot task planner 

The Matlab version of the robot task planner does not need to be installed. Simply copy all 

Matlab source code files to a working folder and access it from Matlab by making the Current 

Folder field point to that folder. 

6.2.2.8 Description of how MCC is used in a complete use case 

The operation flow of MCC and its phases are shown in Figure 44 and Figure 45. The main 

ideas in the mission process are that  

1. the process completes during the execution 

2. the mission file transform to mission report. 

The complex farm operations that are the missions cannot be pre-planned as the complete 

execution flow may depend on the data that is created. For example, in the pest management 

the precision spraying cannot be designed in detail, before we know where the pests are. So, 

the mission can be planned only to the phase where we know all the input data. In fact, each 

use case has different needs, for example, in pilot 1 for Botrytis detection, it is possible to have 

pre-planned routes, based in the aerial scouting, for the ground robots performing the ground 

inspection and treatment tasks. 

The mission produces data during the execution. The data can be related to the observations 

of the robot as in case of imaging survey of pests, or it can be data related to the execution of 

the task. Both data examples are valuable. Image data affects to next mission phases, they can 

be used as a data set for ML service development, or as a data set used for creating estimates 

for pest populations, for example. The robot log data can be used for robot maintenance or 

for calculating the carbon footprint of the crop. All the possible uses of data are impossible to 

know but these examples show already that they have value and are worth of collecting and 

linking to the mission itself. 

The MCC uses the mission file to link created data to the mission, and at the same time the 

mission file transforms to the mission report. The plan of each mission phase contains a 

placeholder for a link to mission results and these placeholders are filled with actual links to 

report files at the end of each phase. 

As seen in Figure 45, a mission phase has three options: fleet task, service task or user task. 

Both service and user task are straight forward executions of external activities that require 

only the sharing of input data and receiving the results data from MCC. The fleet task is more 

complex. It consists of fleet monitoring tool activations, robot system set up, communication 

configurations, execution of robot tasks, and transferring of result data to be available for 

mission reporting. During the mission execution the fleet controller controls the fleet and 

robots together with individual robot control systems, understanding that in the ground 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   108 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

robots of some pilots (see pilot 1) the individual robot control module is integrated in the 

robot itself, which follows the task plan defined by the task planner. 

 
Figure 44 Activity diagram of mission planning and execution 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   109 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 
Figure 45 Activity diagram for mission phase execution 

6.2.3 Requirements for external systems 

The MCC is not an isolated and independent system. It has interfaces to Farm Management 

Information Systems, various service providers services, users’ own tools, and robot operators 

ICT systems. Therefore, it also sets up requirements for them and to the robots that are used 

in the missions. 

The main requirement for farm management information system and external services is that 

data between them and MCC can be exchanged through the data space or other data sharing 

system.  The actual implementations depend on system deployments. 

Robot control systems must be capable to create MCC status messages and to understand 

MCC control messages, and to communicate using MQTT. Reference implementation of 

robot’s MCC interface is in FlexiGroBots GitHub.  



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   110 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

MCC communication protocol and message formats are not natively supported by any drone 

as such even if MAVlink-based tools are used as a basis of the mission control centre. DJI 

Drones do not use MAVlink or other open standard protocols but proprietary one. DJI drones 

are important to be supported as they are the most widely used in the drone market. DJI 

provides API that has been used to create a custom DJI drone robot controller. We have 

implemented such an Android-based controller in the FlexiGroBots project that can take MCC 

commands and create MCC status messages to perform tasks. The tool is specific to the 

situational awareness use case but same principles and enables the utilization of low-cost 

consumer-grade drone use. 

6.3 Data models 

The main data model related to MCC is the mission file. The mission file is specified as a JSON 

schema. The initial structure of Mission File is given in Figure 46. 

6.3.1 Communication protocols 

The MCC communication will be based on IDSA data space protocol and MQTT messaging [4]. 

The IDSA communication is described in [52]. IDSA protocol is used in the exchange of data 

files related to mission execution between the companies and organizations. The status and 

command messages between are described as payloads of MQTT messages. 

6.3.1.1 MCC status message  

The MCC status messages are the messages send by the robots to the fleet controller. Purpose 

is to convey the locations and status of the device to the fleet operator and other services that 

need situational information from the robots. The structure of the messages is following: 

MQTT topic is:  /<api_key>/<robot_id>/attrs 

Where: 

• <api_key> is a unique identifier of the mission (MissionID) 

• <robot_id> is a unique identifier for the robot 

• attrs is topic for robots to publish their status 

The MQTT payload conforms to UltraLight protocol where fields are separated with "|" 

character. The field values are strings. In status message the payload has following fields 

available: 

• “lat”;  latitude as GPS coordinates 

• “lon”:  longitude as longitude GPS coordinates 

• “ele”: elevation as meters 

• “h”:  heading as degrees 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   111 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

• "v”:  velocity as meters per second 

• “stat":  status code of sender 

 

 
Figure 46 Structure of the mission file 

Example payload would be: lat|65.0234|lon|25.2745|ele|5.121|h|43.123|v|5.002|stat|2 

Status codes are numbers (presented as strings) from 000 to 999. The status code descriptions 

and actions are given in a separate table to found at GitHub.  Example status codes are: 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   112 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

• 000 = Idle 

• 100 = Ready 

• 200 = Normal operation 

• 300 = Paused 

• 400 = Task completed 

• 500 = Changing task 

• 600 = Task aborted 

• 700 = Alert 

• 800 = Error 

6.3.1.2 MCC Command message 

The MCC command message is a MQTT payload meant for Fleet controller to give commands 

to the robots. 

The MQTT topic is: /<api_key>/<field contoller_id>/attrs 

Where: 

• <api_key> is a unique identifier of the mission (MissionID) 

• <field_controller_id> is a unique identifier for the field controller that sends the 

messages 

• attrs is topic for robots to publish their status. 

The MQTT message payload conforms to UltraLight protocol where fields (strings) are 

separated with "|" character. In control message the payload has following fields available: 

• "target": receivers “MQTT_id” or “all” for messages to all subscribed devices 

• “com”:  command code 

• “data”:  data code 

Example payload would be: target|all|com|100|data|000 

Example message: /01001/fc_oo1/attrs target|all|comm|100|data|000 

Command codes are numbers from 000 to 999. Current codes defined are: 

• 100:    start task - starts the current active task of the  

• 200:    stop task - stops the current active task of the robot  

• 300:   pause task - stops the execution of the current  

• 400:    resume task - resumes to execute paused tasks  

• 500:    change task - robot loads a new task identified by task number and 

  makes it to an active task. 

Data codes depend on the command. Currently only change task has a data field and it 

contains the position of the next task in the robot task list to be executed by the robot. 

Additional status codes could be defined to commend message table. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   113 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

6.4 Application Programming Interfaces (APIs) 

The MCC is a data driven system and the operation of MCC mission management is based on 

data and file sharing instead of APIs. The fleet management is based on MQTT messaging.  

The data exchange through the data space is done using Data Space Connector’s API described 

in Chapter 3.4. It is used when mission operator and mission manager exchange mission data 

with an external service or a robot fleet operator. The sequence diagram is shown in Figure 

47. The process starts with co-operation agreement between mission and service operator. 

This is followed by the planning of the phase in which the service is needed. When the plan is 

ready mission manager must share the mission file data to the service operator, who needs 

to add the link to the service output to the mission description. Then both parties subscribe 

to the data artifacts that they will either need for service or receive as a result. During the 

phase execution the mission operator shares the input data, the data space notifies the service 

operator (as it has subscribed to data), the service operator executes the service and shares 

the output data to mission operator, who gets notified by the data space connector. 

 
Figure 47 Data exchange between Mission manager and service through data space 

The process can be implemented manually using the data space connector interfaces. 

Automation possibilities and integration of system configurations to mission planner are 

under study. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   114 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

6.5 Graphical User Interfaces (GUIs) 

The graphical user interfaces for MCC are under development. The Mission manager interface 

will be a REACT interface based on Mission file schema (Mission Workflow Planner) and the 

needed functionalities in Mission Workflow Controller and Reporter. 

Fleet controller and supervisor will be implemented as an extension to QGroundControl. The 

user interface will follow the principles of QGroundControl. 

A simplified version of Fleet controller and supervisor has been developed using Python 3.9.9 

and Tkinter UI library. The focus has been on demonstration of the communication principle 

and on supporting the development of messaging and file formats. Example of user interface 

is given in Figure 48. We also developed a simple robot simulator shown in Figure 48 for 

speeding up the development of messaging design. The simulator was written in Python, and 

it implements only basic movement of robot through waypoints, creation of status messages, 

and responses to control messages. In more complete simulation, we plan to use the more 

complete functional simulators presented in earlier deliverables. 

 
Figure 48 Screenshot from fleet supervisor and controller prototype and a robot simulator 

The robot task planner consists of a series of functions written in Matlab and accessed through 

a main window (Figure 49). This main window is the interface of the planner and has also been 

developed in Matlab. Through this interface any of the different aspects necessary to calculate 

a planning can be configured. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   115 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 
Figure 49 Main window of the robot task planner 

A user and developer's guide of the robot task planner is being prepared for delivery with the 

planner code. 

6.6 Installation 

Status is that implementations are as a source code in GitHub folders and when available the 

Docker containers need to be built by user according to the instruction in GitHub. 

6.7 Prototype availability within FlexiGroBots 

The Mission Control Centre will be available in FlexiGroBots GitHub repository: FlexiGroBots-

H2020/Mission-Control-Centre: Mission Control Centre for heterogenous multi-robot 

operations (github.com) 

• The MCC status and command message specifications are in MCC_messaging folder. 

• The mission file JSON-Schema in in MissionManager folder. 

• The prototype fleet controller and supervisor are in PoC folder. 

QGroundControl station has been cloned from its original GitHub to: FlexiGroBots-

H2020/qgroundcontrol: Cross-platform ground control station for drones (Android, iOS, Mac 

OS, Linux, Windows) (github.com) 

https://github.com/FlexiGroBots-H2020/Mission-Control-Centre
https://github.com/FlexiGroBots-H2020/Mission-Control-Centre
https://github.com/FlexiGroBots-H2020/Mission-Control-Centre
https://github.com/FlexiGroBots-H2020/qgroundcontrol
https://github.com/FlexiGroBots-H2020/qgroundcontrol
https://github.com/FlexiGroBots-H2020/qgroundcontrol


 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   116 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

MQTT messaging with QGroundControl is available in FlexiGroBots-H2020/MVSE: Multi PX4 

Vehicle Simulation Environment with MAVLink Communication over MQTT (github.com) 

DJI drone controller was implemented for Android OS that is distributed with Apache 2.0 

license. Source code of the controller (FGBTrackerI) is hosted at GitHub repository: 

https://github.com/karikolehmainen/FGBTracker 

Tool has been created specifically for Mavic Air 2 which is entry level consumer video drone. 

Other DJI drones can be easily added to the tool but better DJI drones support natively the 

type of actions that the tool is created for (following GPS coordinates) so the control sequence 

created for Air 2 is overly complicated for better and more expensive drones. 

Robot task planning tools will be made available to project’s GitHub. 

6.8 Release planning 

The Mission control centre development is at implementation phase and is best followed 

according to the implementation architecture model. The planned release schedule is given 

in Table 19 and the user stories of MCC are given in Table 20. The implementation of 

components is straightforward. The complexity comes from deployment alternatives and the 

distributed nature of the overall system. 

Component Work to be done Complexity 
(1-10) 

Estimated 
release 

Mission workflow 
planner 

Finalisation of mission editor, interfacing 
to robot data and services available for 
mission, and phase data management in 
MCC 

4 M27 

Mission workflow 
controller 

Implementation of phase status changes, 
phase approval process, and phase 
activation 

4 M28 

Mission reporter Implementation of final report notification 2 M28 

Mission repository Setting up the MCC run-time environment 1 M26 

Mission management 
GUI 

Development of REACT UI for MCC services 3 M27 

Data space interface Development of a back-end that provides 
an interface to data space connector and 
provides authentication, notification, and 
web server for applications 

3 M28 

Fleet controller Transferring to prototype functionality to 
QGroundControl extension 

3 M27 

Fleet supervisor Adding protocol changes to QGC MQTT 
interface 

1 M26 

https://github.com/FlexiGroBots-H2020/MVSE
https://github.com/FlexiGroBots-H2020/MVSE
https://github.com/karikolehmainen/FGBTracker


 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   117 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Component Work to be done Complexity 
(1-10) 

Estimated 
release 

MQTT broker Setting up run-time environment 1 M26 

MCC communication Testing of data space interfaces with MCC 
components, testing of notifications 

1 M25 

Robot task planner Check performance for all pilots and adjust 
suit all use cases 

5 M28 

Table 19 Release plan of MCC components 

The complete MCC will be ready in M28. The pilot demonstrations are expected to start at 

M29-M30 giving some time for system set-ups and testing. 

User story ID User story Priority Story 
points 

MCC_US_01 Create a simulation environment for development 

purposes 
High 1 

MCC_US_02 Create controllers with ground robots in pilot 1 to send 

missions 
High 5 

MCC_US_03 Create controllers with ground robots in pilot 2 to send 

missions 
High 5 

MCC_US_04 Create controllers with ground robots in pilot 3 to send 

missions 
High 5 

MCC_US_05 Create supervisors with ground robots in pilot 1 High 2 

MCC_US_06 Create supervisors with ground robots in pilot 2 High 2 

MCC_US_07 Create supervisors with ground robots in pilot 3 High 2 

MCC_US_08 Implement planner to support missions with multiple 
robots 

Medium 13 

MCC_US_09 Implement events processing and alarms notification Medium 8 

MCC_US_10 Implement Data Space connector Low 3 

MCC_US_11 Implement MQTT communication extension for QGC High 8 

MCC_US_12 Create a model for complete mission workflow and its 
phases 

High 8 

MCC_US_13 Support multi-partner execution of mission High 12 

MCC_US_14 It should be possible to share data created in robot 
missions with AI development platform 

High 12 

Table 20 User stories for MCC 

  



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   118 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

7 Conclusions 

This document compiles the progress regarding the FlexiGroBots platform during the second 

year of the project. It also includes the work planned for the last year of the project, detailing 

the pending aspects of those tasks that theoretically have already come to an end. 

The final version of the Artificial Intelligence platform prototype –which relies on Kubeflow 

and MinIO– has been developed comprising the storage data lake, ML pipelines tools and 

hyperparameter tunning functionalities. Moreover, the platform supports GPU workloads and 

enables the use of APIs to interact with the different components. Pending implementations, 

such as the integration with the data space and pilots, will be released in the coming months. 

IDSA open-source building blocks implemented in the D3.1 has been modified to run in a 

production-ready solution, Kubernetes. For this purpose, all manifests of each DS component 

have been developed, and finally, the system has been deployed in a real production cluster. 

This cluster is located in the cloud providing access to different DS components such as Broker, 

Omejdn, and connectors. Since the last deliverable, IDSA has updated several components 

(connectors, broker, Omejdn). For this reason, those components with older versions have 

been upgraded. Finally, three DS connectors with their certificates have been distributed 

among the pilots. These connectors are ready to be deployed and automatically connected to 

the DS. 

The outcomes and progress carried out in task “T3.3 Geospatial enablers and services” can be 

seen as a further step for the establishment of the FlexiGroBots Agricultural Data Space, by 

facilitating the management and access to the heterogeneous EO data sources in the project 

pilots, in particular the datasets and derived products from the UAV.  In this regard, as the 

project and its pilots progress, more and more EO datasets will be made available (both from 

Sentinel 2 satellites and the drones), which would be difficult to efficiently handling and 

integrating them with other subsystems. Thus, the new implemented features allow to easily 

generate the STAC metadata necessary for the indexation of these EO datasets into the ODC 

and later accessed and visualization using the OGC interfaces offered by the data cube). 

Different common applications built on top of state-of-the art components have been 

developed and are presented in this document in three groups based on their goal and scope: 

situational awareness (SLAM, People detection, location, and tracking; People action 

recognition, and Moving objects detection); utilities to meet pilot’s specific requirements 

(Orthomosaic assessment, Anonymization, and Dataset generation); and general-purpose 

applications for the agricultural sector (Disease detection, Pest detection and Weed 

detection). All these applications are developed maximizing versatility and applicability in 

different contexts and, potentially, in other related projects. Not all of them have reached the 

same level of performance yet. Therefore, the development tasks will continue for the next 

few months to achieve production ready solutions and  for their integration in the pilots. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   119 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

The MCC v1 contains a protype tool for fleet supervision and control. The tool is based on 

MQTT messaging and to the defined MCC communication messages for robot statuses and 

fleet controller commands. The Matlab prototype of robot task planner has been developed.  

The overall concept of mission management has been defined and specification v1 of mission 

description exists. The path towards v2 contains the development of mission manager services 

and REACT user interfaces, the integration of fleet management components to 

QGroundControl software and its user interface, and development of support for data sharing 

using FlexiGroBots data space. The estimated release of MCC v2 reference implementation is 

M28 (end of April, 2023). 

  



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   120 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

References 

 

[1]  "FlexiGroBots D3.1 – FlexiGroBots patform". 

[2]  "AI4EU Marketplace," [Online]. Available: 

https://aiexp.ai4europe.eu/#/marketPlace#marketplaceTemplate. 

[3]  "AI on Demand," [Online]. Available: https://www.ai4europe.eu/. 

[4]  "MQTT Version 5.0. Edited by Andrew Banks, Ed Briggs, Ken Borgendale, and Rahul 

Gupta. 07 March 2019. OASIS Standard. https://docs.oasis-

open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html. Latest version: https://docs.oasis-

open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html". 

[5]  European Commision (2019), "Ethics guidelines for trustworthy AI | Shaping Europe’s 

digital future," [Online]. Available: https://digital-

strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai. [Accessed 23 01 

2023]. 

[6]  European Commision (2020), "Assessment List for Trustworthy Artificial Intelligence 

(ALTAI) for self-assessment | Shaping Europe’s digital future," [Online]. Available: 

https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificial-

intelligence-altai-self-assessment. [Accessed 23 01 2023]. 

[7]  Mitchell, M. et al., "Model Cards for Model Reporting," in Proceedings of the Conference 

on Fairness, Accountability, and Transparency, pp. 220–229. 

doi:10.1145/3287560.3287596, 2019.  

[8]  Gebru, T. et al., "Datasheets for Datasets," arXiv. Available at: 

http://arxiv.org/abs/1803.09010 (Accessed: 29 May 2022), 2021. 

[9]  "Kubeflow," [Online]. Available: https://www.kubeflow.org/. [Accessed 9 Nobember 

2022]. 

[10]  "Protocol Buffers Documentation," [Online]. Available: https://protobuf.dev/overview/. 

[11]  "Official MinIO web-page," [Online]. Available: https://github.com/FlexiGroBots-

H2020/AI-platform/tree/master/minio. 

[12]  "MinIO library," [Online]. Available: https://github.com/FlexiGroBots-H2020/AI-

platform/blob/25-minio_library/minio/Minio_lib.ipynb. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   121 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

[13]  "MinIO repository in FlexiGroBots," [Online]. Available: 

https://github.com/FlexiGroBots-H2020/AI-platform/tree/master/minio. 

[14]  D3.1 FlexiGroBots Platform v1.  

[15]  "International Data Spaces Association GitHub repository," [Online]. Available: 

https://github.com/International-Data-Spaces-Association. 

[16]  https://kubernetes.io/es/.  

[17]  https://github.com/FlexiGroBots-H2020/Data-Space.  

[18]  "The International Data Spaces Association on GitHub," [Online]. Available: Available: 

https://github.com/International-Data-Spaces-Association/idsa. 

[19]  "Official web page of Swagger," [Online]. Available: https://swagger.io/. 

[20]  "Redis," [Online]. Available: https://redis.io/. [Accessed 24 01 2023]. 

[21]  Flask, "Flask API-REST engine.," 25 01 2023. [Online]. Available: 

https://palletsprojects.com/p/flask/. [Accessed 25 01 2023]. 

[22]  "Jinja," [Online]. Available: https://jinja.palletsprojects.com/en/3.1.x/. [Accessed 07 02 

2023]. 

[23]  https://itsdangerous.palletsprojects.com/en/2.1.x/, "itsdangerous," [Online]. Available: 

https://itsdangerous.palletsprojects.com/en/2.1.x/. [Accessed 07 02 2023]. 

[24]  "Traefik official web Page," [Online]. Available: https://traefik.io/. 

[25]  "Internet Society, TLS Basics," [Online]. Available: 

https://www.internetsociety.org/deploy360/tls/basics/. [Accessed 09 03 2023]. 

[26]  "Dataspace connector Github project," [Online]. Available: 

https://github.com/International-Data-Spaces-Association/DataspaceConnector. 

[27]  "The International Data Spaces Association on GitHub," [Online]. Available: 

https://github.com/International-Data-Spaces-Association/idsa. 

[28]  "Kubectl official web page," [Online]. Available: 

https://kubernetes.io/es/docs/tasks/tools/. 

[29]  "Preconfiguration Postman collection K8s," [Online]. Available: 

https://github.com/FlexiGroBots-H2020/Data-

Space/blob/main/k8s/TestbedPreconfigurationK8s.postman_collection.json. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   122 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

[30]  S. Shinya, S. Mikiya and S. Ken, "OpenVSLAM: A Versatile Visual SLAM Framework," 10 

10 2019. [Online]. Available: https://arxiv.org/abs/1910.01122. 

[31]  C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel and J. D. Tardós, "ORB-SLAM3: 

An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM," 23 4 

2021. [Online]. Available: https://arxiv.org/abs/2007.11898. 

[32]  stella-cv, "Github stella_vslam," stella-cv, 31 Jan 2021. [Online]. Available: 

https://github.com/stella-cv/stella_vslam. [Accessed 29 Nov 2022]. 

[33]  Stereolabs, "Stereolabs Zed 2i stereo camera home page," Stereolabs, [Online]. 

Available: https://www.stereolabs.com/zed-2i/. [Accessed 29 Nov 2022]. 

[34]  X. Zhou, R. Girdhar, A. Joulin, P. Krähenbühl and I. Misra, "Detecting Twenty-thousand 

Classes using Image-level Supervision," FAIR, 29 Jul 2022. [Online]. Available: 

https://arxiv.org/abs/2201.02605. [Accessed 29 Nov 2022]. 

[35]  A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. 

Mishkin, J. Clark, G. Krueger and I. Sutskever, "Learning Transferable Visual Models From 

Natural Language Supervision," FAIR, 26 Feb 2021. [Online]. Available: 

https://arxiv.org/abs/2103.00020. [Accessed 29 Nov 2022]. 

[36]  N. Wojke, A. Bewley and D. Paulus, "Simple Online and Realtime Tracking with a Deep 

Association Metric," 21 Mar 2017. [Online]. Available: 

https://arxiv.org/abs/1703.07402. 

[37]  roboflow-ai, "Github Zero-shot Object tracking," roboflow-ai, 23 Aug 2021. [Online]. 

Available: https://github.com/roboflow-ai/zero-shot-object-tracking. [Accessed 14 Nov 

2022]. 

[38]  R. Ranftl, A. Bochkovskiy and V. Koltun, "Vision Transformers for Dense Prediction," 24 

Mar 2021. [Online]. Available: https://arxiv.org/abs/2103.13413. [Accessed 27 Oct 

2022]. 

[39]  M. Contributors, "OpenMMLab's Next Generation Video Understanding Toolbox and 

Benchmark," open-mmlab, 2020. [Online]. Available: https://github.com/open-

mmlab/mmaction2. [Accessed 21 Nov 2022]. 

[40]  C. Gu, C. Sun, D. A. Ross, C. Vondrick, C. Pantofaru, Y. Li, S. Vijayanarasimhan, G. Toderici, 

S. Ricco, R. Sukthankar, C. Schmid and J. Malik, "AVA: A Video Dataset of Spatio-

temporally Localized Atomic Visual Actions," Google, 30 Apr 2018. [Online]. Available: 

https://arxiv.org/abs/1705.08421. [Accessed 29 Nov 2022]. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   123 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

[41]  P. Zhu, L. Wen, X. Bian, H. Ling and Q. Hu, "Vision Meets Drones: A Challenge," 4 Oct 

2021. [Online]. Available: https://arxiv.org/pdf/2001.06303.pdf. [Accessed 22 Nov 

2022]. 

[42]  Ultralytics, "YOLOv5," Ultralytics, 28 Oct 2021. [Online]. Available: 

https://github.com/ultralytics/yolov5. [Accessed 27 Nov 2022]. 

[43]  OpenDoneMap, " A command line toolkit to generate maps, point clouds, 3D models 

and DEMs from drone, balloon or kite images.," OpenDoneMap, 20 Oct 2022. [Online]. 

Available: https://github.com/OpenDroneMap/ODM. [Accessed 21 Oct 2022]. 

[44]  S. Vélez, C. Poblete-Echeverría, J. Rubio, R. Vacas and E. Barajas, "Estimation of Leaf Area 

Index in vineyards by analysing projected shadows using UAV imagery,," OENO One, vol. 

55, no. doi: 10.20870/oeno-one.2021.55.4.4639, pp. 159-180, Nov. 2021.  

[45]  D. Merkel, "Docker: lightweight linux containers for consistent development and 

deployment.," Linux journal, vol. 239, p. 2, 2014.  

[46]  H. Hukkelas, R. Mester and F. Lindseth, "DeepPrivacy: A Generative Adversarial Network 

for Face Anonymization," in Advances in Visual Computing, Springer International 

Publishing, 2019, pp. 565 - 578. 

[47]  R. Beaumont, "Easily compute clip embeddings and build a clip retrieval system with 

them," 1 Dec 2020. [Online]. Available: https://github.com/rom1504/clip-retrieval. 

[Accessed 4 Nov 2022]. 

[48]  C. Schuhmann, R. Vencu, R. Beaumont, T. Coombes, C. Gordon, A. Katta, R. Kaczmarczyk 

and J. Jitsev, "LAION-5B: a new era of open large-scale multi-modal datasets," Laion, 11 

Nov 2022. [Online]. Available: https://laion.ai/blog/laion-5b/. [Accessed 29 Nov 2022]. 

[49]  R. Beaumont, "Easily turn large sets of image urls to an image dataset. Can download, 

resize and package 100M urls in 20h on one machine.," 29 Jul 2021. [Online]. Available: 

https://github.com/rom1504/img2dataset. [Accessed 26 Nov 2022]. 

[50]  B. E. Moore and J. J. Corso, "FiftyOne: The open-source tool for building high-quality 

datasets and computer vision models," Voxel51, 2020. [Online]. Available: 

https://github.com/voxel51/fiftyone. [Accessed 29 Nov 2022]. 

[51]  S. Haug and J. Ostermann, "A Crop/Weed Field Image Dataset for the Evaluation of 

Computer Vision Based Precision Agriculture Tasks," in Computer Vision - ECCV 2014 

Workshops, Springer, 2015, pp. 105-116. 

[52]  IDSA, "Anforderungen und Referenzarchitektur eines Security Gateways zum Austausch 

von Industriedaten und Diensten, DIN SPEC 27070:2020-03," 2020. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   124 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

[53]  Conesa-Muñoz, J., Bengochea-Guevara, J. M., Andujar, D., & Ribeiro, A., "Route planning 

for agricultural tasks: A general approach for fleets of autonomous vehicles in site-

specific herbicide applications," Computers and Electronics in Agriculture, vol. 127, pp. 

204-220, 2016.  

[54]  Conesa-Muñoz, J., Pajares, G., & Ribeiro, A., "Mix-opt: A new route operator for optimal 

coverage path planning for a fleet in an agricultural environment," Expert Systems with 

Applications, vol. 54, pp. 364-378, 2016.  

[55]  K. Deb, "Multi-objective Optimization," in Search methodologies, Boston, MA., Springer, 

2014, pp. 403-449. 

[56]  Blum, C.; Roli, A., "Metaheuristics in combinatorial optimization: Overview and 

conceptual comparison," ACM Computing Surveys (CSUR), vol. 35, no. 3, pp. 268-308, 

2003.  

[57]  L. E. Dubins, "On curves of minimal length with a constraint on average curvature, and 

with prescribed initial and terminal positions and tangents," American Journal of 

mathematics, pp. 497-516., 1957.  

[58]  Shkel, A. M. and Lumelsky, V. , "Classification of the Dubins set," Robotics and 

Autonomous Systems, pp. 179-202., 2001.  

 

 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   125 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Annex A: Model Cards and Dataset Datasheets 

Model Card for Model Reporting: MODTL tool 
Based on Mitchell et al. 2019 

With elements from the draft EU AI Act, Annex IV, 2021 

Category 
Question 

ID 
Sub-

Category 
Question Response 

1. Model 
details. 
Basic 

informatio
n about the 

model 

1 

Person or 
organization 
developing 

model 

What person or organization developed the model? This can be 
used by all stakeholders to infer details pertaining to model 

development and potential conflicts of interest 

ATOS, with partners in the FlexiGroBots 
project. https://flexigrobots-h2020.eu/ 

2 Model date 

When was the model developed? This is useful for all 
stakeholders to become further informed on what techniques 

and data sources were likely to be available during model 
development. 

Start of development: July 2022 
Publication of current version: 5.9.2022 

3 
Model 
version 

Which version of the model is it, and how does it differ from 
previous versions? This is useful for all stakeholders to track 

whether the model is the latest version, associate known bugs 
to the correct model versions, and aid in model comparisons. 

1.0 

4 Model type 

What type of model is it? This includes basic model architecture 
details, such as whether it is a Naive Bayes classifier, a 
Convolutional Neural Network, etc. This is likely to be 

particularly relevant for software and model developers, as well 
as individuals knowledgeable about machine learning, to 

highlight what kinds of assumptions are encoded in the system. 

The model is a modification of YOLOv5 L, 
called TPH-YOLOv5. This model improved 

YOLOv5-L (CNN) based on Transformer 
Prediction Head for object detection on UAV 
footage (tiny objects). The model was fine-



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   126 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Model Card for Model Reporting: MODTL tool 
tuned on images of tractors and other 

vehicles from several sources. 

5 

Paper or 
other 

resource for 
more 

information 

Where can resources for more information be found? 
For more information about the TPH-

YOLOv5 base model, see 
https://github.com/cv516Buaa/tph-yolov5 

6 
Citation 
details 

How should the model be cited? 
It is not yet available, for the moment only 

for consortium partners. It will soon be 
available to the European community. 

7 
License and 

IP 
Under which licence is the model published? If necessary, add 

any other information related to intellectual property (IP). 
GPL-3.0 

8 
Feedback on 

the model 
E.g., what is an email address that people 

may write to for further information? 
Mario Triviño, mario.trivino@atos.net 

2. Intended 
Use. Use 

cases that 
were 

envisioned 
during 

developme
nt. 

9 

Primary 
intended 
uses and 
purpose 

This section details whether the model was developed with 
general or specific tasks in mind (e.g., plant recognition 

worldwide or in the Pacific Northwest). The use cases may be as 
broadly or narrowly defined as the developers intend. For 

example, if the model was built simply to label images, then 
this task should be indicated as the primary intended use case. 

Detection of 5 classes from an UAV point of 
view: Tractor (class 0); People (class 1); Car 

(class 2); Van (class 3); Truck (class 4). 
 

The primary intended use-case is to detect 
possible vehicles and people that can be 

present in the field, in order to avoid 
dangerous situations. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   127 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Model Card for Model Reporting: MODTL tool 

10 
Primary 

intended 
users 

For example, was the model developed for hobbyists, or 
enterprise solutions? This helps users gain insight into how 

robust the model may be to different kinds of inputs. 

 
Intended users are technical providers of 

agricultural robotics solutions to monitor the 
position of fleets of vehicles and operators 

by aerial shot. Farmers can also use the 
model, but only when integrated into a 

broader system.  

11 
Out-of-scope 

use cases 

Here, the model card should highlight technology that the 
model might easily be confused with, or related contexts that 

users could try to apply the model to. This section may provide 
an opportunity to recommend a related or similar model that 

was designed to better meet that particular need, where 
possible. This section is inspired by warning labels on food and 

toys, and similar disclaimers presented in electronic datasheets. 
Examples include “not for use on text examples shorter than 

100 tokens” or “for use on black-and-white images only; please 
consider our research group’s full-colour-image classifier for 

colour images.” Examples include “not for use on text examples 
shorter than 100 

The model is not suitable for imaging heights 
above 50-80 metres, and its performance 
suffers greatly as the UAV's flight altitude 
increases. The ability to detect people is 
reduced at heights closer to 50 meters. 

3. Usage 
Informatio

n 
12 

Software 
requirement

s 

What are software requirements and dependencies? If 
possible, please add a link to an open source repository like 
GitHub with details on dependencies, the environment and 

documentation. 

The model was trained with the following 
Python packages on a Linux machine: 

Python = 3.8.10 
PyTorch==1.10 

 
Details are available on GitHub 

https://github.com/cv516Buaa/tph-yolov5 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   128 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Model Card for Model Reporting: MODTL tool 

13 
Hardware 

requirement
s - Training 

What are hardware requirements for training the model (e.g. 
CPU or GPU)? 

The model was trained with an Nvidia T4 
GPU with 16 GB RAM. The model was 

trained in the AI-platform in the 
FlexiGroBots project. https://flexigrobots-

h2020.eu/ 

14 
Hardware 

requirement
s - Inference 

What are hardware requirements for deploying the model (e.g. 
CPU or GPU)? What do users need to take into account 

regarding hardware regarding deployment and inference? 

Inference requires a GPU, it has been tested 
on an Nvidia GeForce GTX 1070 GPU with 8 
GB RAM and gives 6 frames processed per 
second. If there are no time constraints or 
requirements a standard CPU is sufficient. 

14 
Technical 

usage 
Instructions 

Provide any other information which 
helps users use the model. Ideally, add 
a code snippet illustrating a typical use-
case. You can also add a link to a GitHub 
repository with usage instructions. This 
is inspired by model cards such as this: 
https://huggingface.co/microsoft/beit-

base-patch16-224-pt22k-ft22k 

The model deploy information and code can be found in the original 
model architecture GitHub repository: 

https://github.com/cv516Buaa/tph-yolov5 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   129 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Model Card for Model Reporting: MODTL tool 

15 
Inputs and 

outputs 
Provide a short description of the model's inputs and outputs 

The model takes an image as input 
(1536*1536 pixels) and outputs an image 
with the detections drawn overlapping the 
original image 

4. Factors. 
Factors 
could 

include 
demograph

ic or 
phenotypic 

groups, 
environme

ntal 
conditions, 
technical 

attributes, 
or others. 

16 
Relevant 
factors 

What are foreseeable salient factors for which model 
performance may vary, and how were these determined? 

Model cards ideally provide a summary of model performance 
across a variety of relevant factors including groups, 

instrumentation, and environments. For example: What specific 
instrumentation hardware or software was used to obtain the 

images, which could influence performance? For which specific 
environmental conditions was the model designed (e.g. 

summer in Italy)? Was training and evaluation conducted on 
specific demographic groups (e.g. mostly images from 18 - 30 

year olds in the US)? For more details, see section 4.3 in 
https://arxiv.org/pdf/1810.03993.pdf 

Images taken from FlexiGroBots Pilot 1 
Environmental conditions: The model was 

trained on aerial images from rapeseed crop 
fields in Finland during the summer and in 

day light.  
Instrumentation: The images were captured 

with a DJI drone with 4K resolution. 
Groups: The model is not trained on images 

of recognizable people. 
Other sources (Laion5B & Visdrone) 

Environmental conditions: The conditions 
present in this part of dataset have a high 

variability and richness of scenarios. 
Instrumentation: several different unknown 

cameras. 
Groups: The model is not trained on images 

of recognizable people. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   130 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Model Card for Model Reporting: MODTL tool 

5. Metrics. 
Metrics 

should be 
chosen to 

reflect 
potential 

real-world 
impacts of 
the model. 

17 
Model 

performance 
measures 

What measures of model performance are being reported, and 
why were they selected over other measures of model 

performance? Please provide all relevant metrics. 

F1-score: 0.69 
Precision-score: 0.75 

Recall-score: 0.64 
mAP-0.5: 0.71 

Tractor mAP-0.5: 0.64 
People mAP-0.5: 0.76 

Car mAP-0.5: 0.91 
Van mAP-0.5: 0.62 

Truck mAP-0.5: 0.57 

18 
Decision 

thresholds 

If decision thresholds are used, what are they, and why were 
those decision thresholds chosen? When the model card is 

presented in a digital format, a threshold slider should ideally 
be available to view performance parameters across various 

decision thresholds. 

We recommend a low confidence threshold, 
such as 0.2, followed by a tracker.  

19 

Approaches 
to 

uncertainty 
and 

variability 

How are the measurements and estimations of these metrics 
calculated? For example, this may include standard deviation, 

variance, confidence intervals, or KL divergence. Details of how 
these values are approximated should also be included (e.g., 

average of 5 runs, 10-fold cross-validation). 

The metrics were determined using an 80% - 
5% - 15% split in train-val-test split. 

Hyperparameters were determined on the 
training set. 

 Adam optimizer. Yolov5 compose lost 
function. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   131 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Model Card for Model Reporting: MODTL tool 

6. Training 
and 

Evaluation 
Data. 

Details on 
the 

dataset(s) 
used for 

the 
quantitativ
e analyses 
in the card. 

20 Datasets 
What dataset(s) were used to (1) train and (2) evaluate the 

model? If possible, please add a link to details on the respective 
datasets used, for example a datasheet. 

The model was fine-tuned on the 
FlexiGroBots Visdrone_Tractor_v1 dataset. 
This dataset is composed of images coming 

from 3 sources:  
Pilot 1 (Finnish rapeseed field);  

Visdrone 
(https://github.com/VisDrone/VisDrone-

Dataset); Laion5b 
(https://laion.ai/blog/laion-5b/) 

21 Motivation Why were these datasets chosen? 

The Visdrone_Tractor_v1 dataset is 
specifically tailored to the intended use-case 

of vehicle and people monitoring in 
agricultural fields. 

22 
Data Pre-

processing 

How was the data pre-processed for evaluation (e.g., 
tokenization of sentences, cropping of images, any filtering 

such as dropping images without faces)? Please provide a short 
description. You can also add a GitHub link to the respective 

pre-processing scripts.  

Images are processed in colour and 
1536x1536 pixels. For details, see the pre-

processing script here: 
https://github.com/cv516Buaa/tph-yolov5 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   132 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Model Card for Model Reporting: MODTL tool 

7. 
Quantitativ
e Analyses 

23 
Disaggregate
d results and 

fairness 

How did the model perform with respect to each factor (see 
question 15)? Quantitative analyses should be disaggregated, 

that is, broken down by the chosen factors. Quantitative 
analyses should provide the results of evaluating the model 

according to the chosen metrics, providing confidence interval 
values when possible. Parity on the different metrics across 

disaggregated population subgroups corresponds to how 
fairness is often defined. For an example, see figure 2. in 

https://arxiv.org/pdf/1810.03993.pdf 

The model was only evaluated on one 
environment (rapeseed crop field in Finland) 
and specific instrumentation. Disaggregated 

results for different environments and 
instrumentation are therefore not available.  

8. Ethical 
Considerati

ons 
24 

Ethical 
Consideratio

ns 

Example topics for ethical consideration: Does the training data 
contain sensitive information? What risks and harms could arise 

during the use of the model? Which mitigation measures are 
recommended? Are there particularly problematic use-cases? 
Did the model go through an ethical assessment procedure? 

The training data only contains aerial images 
of vehicles and people, and no recognizable 

elements or sensitive information are 
present. The model itself does not pose 

risks, as it only detects vehicles. However, 
the low accuracy can lead to problems when 

applied to try to avoid collisions or 
unnecessary approaches between 

agricultural field elements. Ethical impacts of 
the model were discussed in the 

FlexiGroBots project.  



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   133 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Model Card for Model Reporting: MODTL tool 

9. Caveats 
and 

Recommen
dations 

25 
Caveats and 
Recommend

ations 

This section should list additional concerns that were not 
covered in the previous sections. For example, did the results 
suggest any further testing? Were there any relevant groups 

that were not represented in the evaluation dataset? Are there 
additional recommendations for model use? What are the ideal 

characteristics of an evaluation dataset for this model? 

Performance of the model was only tested 
for the environmental and instrumental 
factors explained above. If the model is 
applied in a different context, additional 

assessments should be conducted. 
Moreover, we recommend that users assess 
the model not only on our test data, but also 

in their own specific use-cases in a specific 
environment and instrumentation when 

embedded into a broader system for. 
Table 21 Model card: MODTL TPH-YOLO detector 

Datasheets for Datasets: 
Based on Gebru et al. 2021 

With elements from the draft EU AI Act, Annex IV, 2021 

Category 
Question 

ID 
Question Response 

1. Motivation 

1 
For what purpose was the dataset created? Was 

there a specific task in mind? 

The dataset is designed to be a training dataset for a machine learning 
detector to obtain the bounding boxes of vehicles and people on 

agricultural fields from UAV footage. 

2 
Who created the dataset (e.g., which team, 

research group) and on behalf of which entity 
(e.g., company, institution, organization)? 

The dataset was created by ATOS, with the collaboration of 
FlexiGroBots Finland Pilot 1 partners.  



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   134 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Datasheets for Datasets: 

3 Who funded the creation of the dataset? 

The dataset was created as part of the FlexiGroBots project. The 
project received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 

101017111. 

4 Any other comments? 
Additional information on the FlexiGroBots project is available here: 

https://flexigrobots-h2020.eu/ 

2. Composition 

5 
What do the instances that comprise the dataset 

represent (e.g., photos of plants, paragraphs from 
news articles)? 

Photos of tractors, people, cars, trucks and vans from an aerial 
perspective. 

6 
How many instances are there in total? (e.g. how 

many photos) 
10174 labelled images. 

7 

Is the dataset a sample, or does it contain all 
possible instances? If it is a sample, then what is 

the larger set? Is the sample representative of the 
larger set? Please elaborate. 

The dataset comprises photos from three different sources: (1) images 
obtained in the Finnish rapeseed fields of FlexiGroBots Pilot 1; (2) aerial 
images of tractors extracted from the freely accessible Laion5b dataset; 

(3) images from the Visdrone dataset.    

8 

Is there a label associated with each instance? If 
so, please describe the labels. If the data was 

annotated manually, please describe the coding 
instructions for annotators. 

Images are annotated with detections of five classes: Tractor, People, 
Car, Truck and Van. The annotations were automatically performed 

with Detic model on previously unlabelled photos from Laion5b or Pilot 
1. Visdrone images came with labels. 

More information about Detic can be found here: 
https://github.com/facebookresearch/Detic 

 
The annotation format is YOLO format:  

(class_id, x_centre,  y_centre,  width,  height) 

9 
Is there a codebook or more detailed 

documentation of each variable and meta data in 
the dataset? If so, please provide a link. 

The annotation instructions and explanation of each variable is 
available in the section “Convert the Annotations into the YOLOv5 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   135 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Datasheets for Datasets: 
Format” include in this blog: https://blog.paperspace.com/train-

yolov5-custom-data/ 

10 
Are you aware of any potential errors, sources of 

noise, or redundancies in the dataset? 

The data were taken at different sources in different conditions to 
increase variability. The automatic labelling process depends on the 
quality of the annotation results provided by Detic, even though a 

subsequent manual inspection has been carried out to avoid duplicity 
or inaccurately labelled objects, the dataset is sure to continue to 

contain erroneous images. 

11 

Does the dataset contain data that might be 
considered confidential or offensive (e.g., data 
that is protected by legal privilege or by doctor-
patient confidentiality, or offensive images or 

texts)? 

No. 

12 
Does the dataset relate to people? E.g. a dataset 
relates to people if farm workers could be visible 

on some images. 

As the main subject in the images are people and vehicles, people 
might be visible in the images but not recognizable. 

13 

If the dataset relates to people, please elaborate 
on data protection measures that have been 
taken. For example, did individuals provide 

consent? Were they informed about their rights 
based on the GDPR? 

All workers who could be visible provided explicit consent to the 
collection, processing and publication of the data. The consent 

followed the standards of the GDPR. As an additional step before 
publication, images were anonymised with an in-house face blurring 

software. 

14 
Is it possible to identify individuals either directly 

(e.g. through their faces) or indirectly (i.e., in 
combination with other data) from the dataset? 

No. 

https://blog.paperspace.com/train-yolov5-custom-data/
https://blog.paperspace.com/train-yolov5-custom-data/


 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   136 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Datasheets for Datasets: 

15 

Does the dataset contain data that might be 
considered sensitive in any way (e.g., data that 
reveals racial or ethnic origins, or locations or 

biometric data)? 

No. 

16 Any additional information? 
The quality of the dataset have been proved enough to train a detector 

with F1-score: 0.69 at least. 

3. Collection 
Process 

17 
How was the data acquired? (e.g., hardware 

apparatuses or sensors, manual human curation, 
software programs, software APIs) 

Images were captured with several devices, some of them unknown. 
The part coming from the Finnish FlexiGroBots Pilot has been taken 

with a DJI drone with 4k resolution.   

18 

Who was involved in the data collection process 
(e.g., students, crowdworkers, contractors) and 
how were they compensated (e.g., how much 

were crowdworkers paid)? 

The data collected in the FlexiGroBots’ context was collected by Pilot 1 
partners and annotated automatically by Atos. A manual review of the 
resulting dataset was performed also by Atos. All this done by full-time 

employees at Atos as part of their regular paid work.  

19 Over what timeframe was the data collected? July/August 2021 

20 Was any ethical review process conducted? 

The creation and processing of the dataset followed the ethical 
procedures of the FlexiGroBots project. For more details, see Task 1.5 
and Deliverable 2.6 on the FlexiGroBots website: https://flexigrobots-

h2020.eu/library/deliverables 

21 Any additional information? NA 

4. Pre-
processing/ 

cleaning/ 
labelling 

22 
Was any pre-processing/cleaning of the data 

done (e.g., removal of instances, processing of 
missing values)? 

Yes, the data was cleaned manually and algorithmically to exclude 
noisy, irrelevant data and anonymise images of individuals. 

23 Any additional information? NA 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   137 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Datasheets for Datasets: 

5. Uses 

24 
Has the dataset been used for any tasks already? 

If so, please provide a description. 

The dataset is currently being used in a pilot of the FlexiGroBots 
project. The dataset has been used to train a deep learning detection 
model to detect people and vehicles in agricultural fields and avoid 

collisions or dangerous approaches. More information will be available 
at: https://flexigrobots-h2020.eu/ 

25 What (other) tasks could the dataset be used for? 
The dataset can be used for any use-case which involves the detection 

of the 5 detection classes from an aerial point of view. 

26 

Is there anything about the composition of the 
dataset or the way it was collected and pre-

processed/cleaned/labelled that might impact 
future uses? 

Automatic labelling of a part of the data may result in lower quality of 
the dataset. 

27 
Are there tasks for which the dataset should not 

be used? If so, please provide a description. 
We only recommend using the dataset for the intended use-case 

described above. 

28 Any other comments? NA 

6. Distribution 
29 

Will the dataset be distributed to third parties 
outside of the entity (e.g., company, institution, 
organization) on behalf of which the dataset was 

created? If so, how and when? 

The dataset will be uploaded in 2023 on the Zenodo platform 

30 
Does the dataset have a digital object identifier 

(DOI)? 
NA 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   138 of 150 

Reference: D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Datasheets for Datasets: 

31 

Will the dataset be distributed under a copyright 
or other intellectual property (IP) license, and/or 
under applicable terms of use (ToU)? If so, please 

describe. 

The dataset is distributed under the Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 license. Due to the inclusion of 

Visdrone dataset.  

32 
Do any export controls or other regulatory 

restrictions apply to the dataset or to individual 
instances? If so, please describe. 

No. 

33 Any other comments? NA 

7. 
Maintenance 

34 
Who is supporting/hosting/maintaining the 

dataset? 
Mario Triviño, ATOS 

35 
How can the owner/curator/manager of the 
dataset be contacted (e.g., email address)? 

mario.trivino@atos.net 

36 

If the dataset relates to people, are there 
applicable limits on the retention of the data 

associated with the instances (e.g., were 
individuals in question told that their data would 
be retained for a fixed period of time and then 

deleted)? 

While the dataset was anonymised, the precautionary consent form 
filled in by individuals requires a retention limit of 5 years.  

37 Any other comments? NA 
Table 22 Dataset datasheet: Visdrone-Tractor-v1 

 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   139 of 150 

Reference: D3.2 Dissemination:  PU Version: 0.4 Status: Draft 

 

Annex B: Robot Task Planner 

As mentioned above, we start from a task planner developed in previous projects [53] [54]. 

Work is currently underway to have a communication based on the IDSA data space to obtain 

the maps generated by the UAVs and to share the generated plans to other parts of the MCC 

architecture. In addition, modifications are being made to properly adapt the behaviour of the 

planner to the new scenarios. In the following, some relevant aspects of task planner are 

summarised. 

The problem of finding the plans - which include the routes - to be followed by the ground 

robots in order to carry out an agricultural task jointly and optimally, is approached from a 

very general point of view, taking into account a multitude of aspects that can influence the 

associated plans and routes.  These are the characteristics of the fleet (number of vehicles, 

working speeds, turning radii, tank capacity, working width, etc.), the crop field (shape, 

number of rows, direction of cultivation, weed distribution, etc.), the type of task (spraying, 

inspection, task with full or partial coverage, etc.), and the optimisation criteria (distance 

travelled, cost per input, time spent, etc.). In this approach, the planning problem is 

formulated in terms of a combinatorial optimisation.  

In agriculture, fields are usually sown in contiguous rows so that, as the crop grows, they are 

formed by parallel rows of plants. Between each two adjacent rows, there is a small furrow or 

empty space, usually called a lane, running lengthwise across the field, the width of which is 

determined by the water, light or space requirements of the crop species. Vehicles driving 

through crops are obliged to move in the direction of cultivation, i.e., the direction in which 

the plants are arranged, otherwise the crop rows would be stepped on and the plants would 

be seriously damaged. In addition, the furrows would cause many vibrations that would affect 

the correct operation of the machinery, in particularly the implements. 

Another important restriction is to avoid driving in reverse, as most agricultural implements 

are not designed to work in reverse. This is the case for ploughs, harrows, etc. Even in the case 

of those implements that could be reversed because they are suspended (spray booms, 

atomisers, etc.), there would be a high probability of damaging the crop and, in addition, the 

extra movement would accentuate soil compaction in the area. Therefore, this work is based 

on a real situation in which the manoeuvres are always carried out outside the cultivation 

area, more specifically in the headlands, which are the areas at the ends of the crop in order 

to allow the turning and movement of the vehicles, and thus the transit between the different 

areas of the crop. On the other hand, the tasks must be carried out in such a way as to 

guarantee total coverage of the crop without overlapping. Taking into account the 

requirements, the representation of a crop that is used divides the field into separate strips, 

which are hereinafter referred to as tracks as they constitute the transit routes within the 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   140 of 150 

Reference: D3.2 Dissemination:  PU Version: 0.4 Status: Draft 

 

crop. The tracks are parallel and in the direction of cultivation, with a width equal to the 

working width of the task to be carried out, which will coincide with the implements used. 

Therefore, the aim is to cover all tracks exactly once using one of the vehicles in the fleet. 

As it is not possible to turn within the tracks (or crop), the routes will be sequences of tracks 

interspersed with manoeuvres to transit between them. Figure 50 shows a field with 7 tracks, 

all oriented by construction according to the direction of cultivation and consisting of 5 

tramlines (4 inside plus half on each side), because the working width of the tool used, in the 

example, covers 5 crop rows. 

 

Figure 50 Field divided into 7 tracks of 5 crop rows each 

It is important to highlight the generality of the proposed representation, as it allows the 

representation of irregularly shaped fields of varying direction, such as those shown in Figure 

51, using tracks of different lengths and with different shapes to adapt them to the crop 

direction. 

 

(a) (b) 

Figure 51 (a) Irregularly shaped fields with varying crop directions and (b) their representation on 
tracks 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   141 of 150 

Reference: D3.2 Dissemination:  PU Version: 0.4 Status: Draft 

 

Mathematically, the problem can then be seen as finding the sequence of tracks that 

minimises the overall cost of the task, since the order in which the tracks are traversed 

determines the paths to be followed and, in turn, the paths affect the overall cost. This is a 

combinatorial optimisation problem, in which the optimal sequence must be found within a 

finite set of possible combinations. Since all tracks have to be travelled exactly once, with only 

one vehicle, the problem could be formulated as a classical combinatorial optimisation 

problem, more precisely as a TSP (Traveling Salesman Problem), but without the requirement 

of the return to the starting track. 

However, in this case, the problem has to be approached in a more general way to adapt the 

approach to the work of a fleet of vehicles, i.e., the problem to be solved would then be similar 

to the mTSP (multi Traveling Salesman Problem).  With this approach, it is possible to obtain 

those routes that perform total field coverage without overlaps at minimum cost; however, 

this model still does not consider the carrying capacity of the vehicles to store/transport the 

inputs. Considering this limitation, in mathematical terms, the problem is similar to the CVRP 

(Capacitated Vehicle Routing Problem). However, a relevant difference with respect to the 

CVRP problem makes the real agricultural problem more complex. In the CVRP the vehicles 

have a certain capacity to store goods that cannot be reloaded in any case, so that one of the 

preconditions of the problem is that the sum total of the vehicles' capacities is greater than or 

equal to the sum total of all the customers' demands, otherwise there would be no solution. 

If this condition were assumed in the agricultural case, it would only be possible to work with 

fields with a need for inputs less than or equal to that initially transported by the fleet as a 

whole, i.e., there would be no possibility of resupply. Clearly, this simplification limits the 

generality of the problem formulated, since regardless of the size of the fleet and the capacity 

of the vehicles, it is impossible to guarantee that any task can be carried out in any field 

without resupply. In other words, resupply is an inherent operation of agricultural tasks and 

as such must be considered in the formulation of the problem. 

Extending the classical CVRP problem to consider refuelling considerably increases the 

difficulty of formulating the problem. A first approximation might assume that it is sufficient 

to go to the supply depot every time a track runs out and the vehicle does not have enough 

input to deal with the next track, however, this is not necessarily the best strategy. The optimal 

time to resupply may vary depending on the location of the supply depot, the amount of input 

remaining in the vehicle, and the amount required to complete the task. For example, if the 

depot is close by when finishing a track, it may be worthwhile to resupply even if there is 

sufficient supply to treat the next tracks if the resupply trip from a point further away from 

the field can be avoided. On the other hand, it can happen that even with a low supply it is 

not necessary to go to the depot if the tracks are redistributed among the vehicles of the fleet 

in such a way that the vehicle concerned has enough with the quantity it is carrying. 

As the tracks are treated individually, refuelling can only take place during transitions from 

one track to the next. Thus, the refuelling sub-problem is reduced to finding the optimal 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   142 of 150 

Reference: D3.2 Dissemination:  PU Version: 0.4 Status: Draft 

 

transitions to and from the depot. Considering refuelling is an extension that significantly 

increases the complexity of the problem. 

Another real situation that can be frequent is that the vehicles do not all have the same 

characteristics, i.e., the fleet is heterogeneous. Considering this case implies to consider the 

associated costs of each vehicle. Furthermore, it must also be taken into account the particular 

capacity associated with each vehicle. When the vehicles are homogeneous, in terms of cost, 

it is irrelevant for optimisation the specific vehicle with which each track is treated, since all 

vehicles will perform the same task with the same associated cost. Hence, in this case the 

optimisation is only in the distance travelled in the transitions to connect the tracks. When 

considering vehicles with different characteristics this is not the case because it is no longer 

indifferent, which vehicle is used on which track. For example, a vehicle with a lower fuel 

consumption will always be preferable to one with a higher fuel consumption. These types of 

multi-objective problems are solved with methods capable of establishing relationships 

between solutions with different costs [55]. 

In summary, the planning problem for carrying out an agricultural task in an optimal way is 

approached under a broad perspective, obtaining by construction solutions with full coverage 

and without overlaps that consider: 1) multiple vehicles with different characteristics, 2) the 

characteristics of the task itself and 3) multiple objectives or optimisation criteria. Also, with 

the proposed problem approach, the shape of the field does not matter as the performance 

is decomposed into a set of tracks with the treatment width and following the layout of the 

crop lines. In short, in all cases the problem is reduced to finding the best order to go through 

all the tracks regardless of where they are located or the layout they have. It is also important 

to note that tasks requiring partial coverage (e.g., a pest control treatment where you only 

want to go to infested tracks) are a sub-problem of those using full coverage (instead of 

considering all tracks you would consider only the infested ones), and therefore this case is 

also covered by the proposed formulation. 

The most common practice to solve a combinatorial optimisation problem such as the one 

described, is to use a meta-heuristic algorithm [56].  

Three available meta-heuristic algorithms have been evaluated to build the robot task 

planner, Simulated Annealing, Genetic Algorithms and Non-Dominated Sorting Genetic 

Algorithm 2 (NSGA-II). These algorithms were selected because they are widely used methods 

for solving classical route planning problems, such as the aforementioned TSP, mTSP and 

CVRP. 

The three proposed methods share a common strategy: 1) they start from a randomly 

generated set of solutions 𝑋 (hereafter also called working set), 2) they evaluate 𝑋 to 

determine if any of the termination criteria are fulfilled, e.g., if any solution is good enough or 

if the maximum search time has been exceeded. If so, the search is terminated and if not 3) 

the best solutions in 𝑋 are selected and stored in a new intermediate set 𝑌. 4) new solutions 

are constructed from those contained in 𝑌 and stored in 𝑋' (neighborhood set, child solution 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   143 of 150 

Reference: D3.2 Dissemination:  PU Version: 0.4 Status: Draft 

 

set or simply child set). 5) the working set 𝑋 is replaced by some combination of the sets 𝑋 

and 𝑋', and 6) the process is repeated from 2). This operation is shown in Figure 52.  

 
1 

 
X = initializeSolutionSet (); 

2 WHILE (NOT TerminationConditions (X)) 

3 Y = selectBestSolutions (X); 

4 X’= buildNewSolutions (Y); 

5 X = combineOld&NewSolutions (X, X’); 

6 END 

Figure 52 Procedure summarising the most external part of the operation of the three selected meta-
heuristic algorithms 

Representing the solution 

Any solution to the agricultural planning problem must contain the information necessary to 

determine how the tracks are distributed among the vehicles in the fleet, in what order each 

vehicle must travel the assigned tracks, and whether they must refuel and, if so, among which 

tracks. 

The order of the tracks and their distribution among the vehicles in the fleet can be 

represented by a permutation of the union of the set 𝑃, which contains all the tracks 𝑝𝑖 into 

which the field was divided, and the set 𝑆, which contains 𝑚 - 1 separators 𝑠𝑖, where 𝑚 is the 

number of vehicles in the fleet. In this way, regardless of where the separators are placed, the 

permutation will always be divided into 𝑚 parts, with the first part containing the tracks run 

by the first vehicle, the second part by the second vehicle, and so on. The order in which the 

tracks are to be traversed is determined by the order in which they appear in each part, so 

that you start with the leftmost track and continue with the next track to the right until you 

reach the last track (the track furthest to the right). If any part contains no tracks (because the 

permutation contains two separators in a row), it means that the corresponding vehicle is not 

involved in the planning. 

For refuelling, as indicated in the formulation, a binary vector 𝑏 with as many elements as 

there are transitions in the permutation will suffice, with the value 1 indicating that there is 

refuelling during the transition 𝑖, and the value 0 indicating that there is not. However, with 

this representation, the vector should have a variable size since the number of transitions 

depends on the number of vehicles used in the solution. size would be 𝑛 - 𝑚𝑢, where 𝑛 is the 

number of tracks and 𝑚𝑢 is the number of vehicles used. In order not to use variable 

representations, which are more difficult to implement, it was decided to use a vector with as 

many components as tracks, redefining the meaning of each 𝑏𝑖 in such a way that a 1 means 

that refuelling must take place between track 𝑝𝑖 and the next one (𝑝𝑖+1), and 0 means that 

there is no refuelling. In case there is no next track, because 𝑝𝑖 is the last one in the route, 𝑏𝑖 

must be ignored regardless of its value because it makes no sense to perform a refuelling. It 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   144 of 150 

Reference: D3.2 Dissemination:  PU Version: 0.4 Status: Draft 

 

does not make sense to perform a resupply after the task has been completed. With this 

representation the problem has 2𝑛 + 𝑚𝑢 - 1 decision variables, being 𝑛 of them binary. 

In what follows, we will refer to the first part of the solution as permutation vector, hint vector 

or simply permutation, while the second part of the solution will be the binary vector of 

replenishments or simply replenishment vector. 

It is important to note that with this representation the solutions by construction cannot give 

rise to collisions between the vehicles within the crop, as the vehicles always work on different 

and disjoint tracks, however these can occur at the headlands as it is a common transit place 

for all vehicles. For this reason, it is assumed that the fleet has a system to avoid collisions at 

the headlands.  

Decoding: getting the actual trajectories and the action plan 

Once the tracks in charge of each vehicle have been identified, the order in which they must 

be travelled and at which points there are refuelling points, all the necessary information is 

available to obtain the exact trajectories of each vehicle. Within the field, the trajectories are 

defined by construction to be the inner centre lines of each track connecting the ends, so that 

the implement passes - and works - along the entire track. 

The calculation of trajectories associated with transitions is more complex. Transitions can be 

either directly between two tracks or by stopping at the depot for refuelling. In the latter case, 

they can be represented as an outbound transition to the depot plus a return transition. As 

the position of the depot and the end points of the tracks are well known, the position of the 

start and end points are known for all transitions. However, as real vehicles cannot turn freely 

in any direction because they have a minimum turning radius related to their mechanical 

limitations, it is not possible to connect both points simply by a straight line but it is necessary 

to know the start and finish orientations. For the case of points on tracks, it is easy to 

determine the departure/entry orientations from the direction of cultivation; whether the 

point is a departure or entry point, and whether it is on the upper or lower headland. 

Equations (3.14) and (3.15) obtain the outbound 𝜃𝑜𝑢𝑡 and inbound 𝜃𝑖𝑛 orientations for a point 

𝑝 from the growing direction 𝜃𝑐, assuming that this has been calculated in the bottom 

headland - top headland direction (see direction of 𝜃𝑐 in Figure 53). 

In the case of the depot, the entrance and exit orientation are assumed to be similar to those 

of the entrance/exit road giving access/exit to the site. Figure 53 shows the entrance and exit 

orientations of the tracks of a field and the supply depot. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   145 of 150 

Reference: D3.2 Dissemination:  PU Version: 0.4 Status: Draft 

 

 

Figure 53 Orientations of a crop 

Knowing then all the exit and entry positions and orientations to the crop, the problem of 

finding transitions with minimum distance translates into finding the shortest path that a 

vehicle with a turning radius must follow to get from an exit point with an initial orientation 

to a destination point with a given orientation. According to Dubins' theorem [57], the shortest 

path between an exit configuration (exit point and orientation) and an entry/arrival 

configuration (arrival point and orientation) is always a sequence of straight lines (R) and 

circular arcs (C) of radius 𝑟𝑚𝑖𝑛 of the form CRC, CCC or a subsequence of the latter two, where 

𝑟𝑚𝑚𝑖𝑛 is the minimum possible turning radius. Extrapolating to vehicle trajectories, as 

vehicles can turn either left or right, the two types of possible trajectories are two types of 

possible trajectories can be broken down into six cases that arise from particularising the 

circular arcs (C) into left (I) or right (D) turns. The six resulting cases are IRI, IRD, DRI, DRD, IDI, 

and DID (see Figure 54). In other words, any minimum path between an input and an output 

configuration will always have a shape that fits one of these six cases or their subcases. 

To know which of the cases contains the minimum path given any two configurations, a usual 

strategy is to evaluate all six cases and keep the one that gives rise to the shortest path. 

Although [58] showed that by geometric reasoning it is possible to know in advance which 

case contains the minimum path, thus saving a lot of computational time, which is of great 

interest if one has to plan in real time or has to evaluate many paths. The latter situation is 

the one we face in this planner, since meta-heuristic algorithms work by constructing a 

multitude of solutions that have to be evaluated. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   146 of 150 

Reference: D3.2 Dissemination:  PU Version: 0.4 Status: Draft 

 

 

Figure 54 The six possible trajectories according to Dubins' theorem [57] between two points with fixed exit 
orientation and entry orientation 

Therefore, by means of [57] and [58] it is possible to know the shortest path for any transition. 
However, as shown in Figure 55, these turns can be concretised in ∏ and Ω manoeuvres, when 
working on rectangular fields and transiting between tracks. For cases where it is necessary to 
work with more general transitions, such as between tracks and reservoirs or between tracks 
in non-rectangular fields, the more general procedure described in [58] can be used. 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   147 of 150 

Reference: D3.2 Dissemination:  PU Version: 0.4 Status: Draft 

 

 

Figure 55 Manoeuvre types for a vehicle of radius 𝑟𝑚𝑖𝑛 in a regular field. (a) ∏-turn, (b) Ω-turn and (c) T-turn 

 

 

 

The first two equations calculate the distance for the manoeuvres ∏ and Ω between tracks 𝑖 

and 𝑗. While last equation indicates, from the turning radius 𝑟𝑚𝑖𝑛 of a vehicle and the track 

width 𝑎𝑐, when one turn or the other should be applied. 

Once it is known how to find the minimum trajectories for the transitions, either by directly 

connecting the tracks or by interleaving a visit to the depot, it is sufficient to connect them 

with the intra-track trajectories to form the route for each vehicle. 

Figure 56 shows, as an example, the trajectories encoded in the solution formed by the 

permutation 𝜎 = (𝑝3, 𝑝6, 𝑝8, 𝑝10, 𝑝10, 𝑠2, 𝑝7, 𝑝2, 𝑝1, 𝑠1, 𝑠3, 𝑝9, 𝑝4, 𝑝5) and the binary replenishment 

vector 𝑏 = (1,0,1,0,0,0,0,0,0,0,0,0,0). The field is composed of 10 tracks (|𝑃| = 10), each in turn 

consisting of 4 crop rows. The field contains stands of weeds (green rectangles) that need to 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   148 of 150 

Reference: D3.2 Dissemination:  PU Version: 0.4 Status: Draft 

 

be treated by the vehicles by spraying herbicide, for which they have 4 m spray booms with 4 

nozzles, one for each tramline. The fleet has 4 vehicles, i.e., |𝑆| = 3, although the third vehicle 

is not part of the solution because in 𝜎 there is no track in its charge. Initially it is known 

whether the vehicles start from the upper or lower headland, so it is easy to infer which end 

of track they have to start from. The turning width of the vehicles is 3 m, which allows transit 

between adjacent runways by Ω manoeuvres, as shown in the transition between the first and 

second runway. 

The refuelling vector indicates that vehicles treating the first and third tracks of the field must 

go to the depot before starting to treat the following tracks. However, since the first track has 

no next track (it is the last track that vehicle 2 treats), in that case it is not necessary to go to 

refuelling. 

 
Figure 56 Trajectories associated with the permutation 𝜎 = (𝑝3, 𝑝6, 𝑝8, 𝑝10, 𝑝10, 𝑠2, 𝑝7, 𝑝2, 𝑝1, 𝑠1, 𝑠3, 𝑝9, 𝑝4, 𝑝5) 

and the vector of refuelling 𝑏 = (1,0,1,0,0,0,0,0,0,0) 

In addition to the trajectories, it is possible to automatically extract from the solution the 

action plan of the task to be performed, i.e., the status (speed, implement on or off) that the 

vehicles must have at each of the points along the routes. For this, it requires a list of the 

points and orientations defining the trajectories (entry and exit points and orientations of the 

tracks or the depot) together with their associated states, plus the intermediate points and 

orientations where there is a change in the state affecting the execution of the task. To 

calculate the status of the implement at each point, in addition to the trajectories, it is 

necessary to use additional information available from the field and the task, in this case the 

weed map indicating where the stands are. From the trajectories, the boom length, the 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   149 of 150 

Reference: D3.2 Dissemination:  PU Version: 0.4 Status: Draft 

 

distribution of the nozzles on the boom, and the position of the stands it is easy to calculate 

at which points the nozzles should be opened and closed to spray only the weeds. Table 23 

shows, as an example, the plan of vehicle 1 of the solution in Figure 56. 

Vehicle   Step Position Orientation Speed 
(km/h) 

Nozzles of the Spray 
boom  

Description 

V1 V2 V3 V4 

1 1 (10, 0) 90° 6 OFF OFF OFF OFF Starting point 

1 2 (10, 10) 90° 10 OFF OFF OFF OFF Exit of track 3 

1 3 (15, 20) 90° 10 OFF OFF OFF OFF Arrival at 
depot 

1 4 (15, 20) 270° 10 OFF OFF OFF OFF Departure from 
depot 

1 5 (22, 10) 270° 6 OFF OFF ON ON Start track 6 

1 6 (22, 8) 270° 6 OFF OFF OFF OFF Change in 
nozzles 

1 7 (22, 0) 270° 10 OFF OFF OFF OFF End of track 6 

1 8 (30, 0) 90° 6 OFF OFF OFF OFF Start track 8 

1 9 (30, 4) 90° 6 OFF ON ON ON Change in 
nozzles 

1 10 (30, 7) 90° 6 OFF OFF ON ON Change in 
nozzles 

1 11 (30, 8) 90° 6 OFF OFF OFF OFF Change in 
nozzles 

1 12 (30, 10) 90° 10 OFF OFF OFF OFF End of track 8 

1 13 (38, 10) 270° 6 OFF OFF OFF OFF Start track 10 

1 14 (38, 8) 270° 6 OFF OFF OFF ON Change in 
nozzles 

1 15 (38, 7) 270° 6 OFF OFF OFF OFF Change in 
nozzles 

1 16 (38, 3) 270° 6 ON ON OFF OFF Change in 
nozzles 

1 17 (38, 0) 270° 0 OFF OFF OFF OFF End point 

Table 23 Plan of vehicle 1 coded in the solution in Figure 56 

For each step, the vehicle has to adopt the associated state and maintain it until the next step. 

For example, in the steps related to the eighth track of the field (steps 8 to 12), it is indicated 

that the unit has to start from point (30, 0) with an orientation of 90° at a speed of 6 km/h. All 

boom nozzles must be switched off until the robot reaches point (30, 4) with the same speed 

and orientation, there the nozzles V2, V3 and V4 (the three rightmost nozzles) have to be 

activated to start spraying the stand in the middle of the track. Everything will remain the 

same until point (30, 7) where the V2 nozzle will be deactivated because the stand is reduced 

in width on the left and, one metre further on at point (30, 8), the other two valves, V3 and 

V4, will be deactivated. Finally, everything remains the same until the end of the runway, point 

(30, 10) where the speed is changed to 10 km per hour. Note that at the headland there are 

no requirements on the speed, so the robot can increase its speed to transit to the next track, 



 

 
Document name: D3.2 FlexiGroBots Platform v2 Page:   150 of 150 

Reference: D3.2 Dissemination:  PU Version: 0.4 Status: Draft 

 

where, once again, the orders to open and close the nozzles to treat the weeds that appear 

on this track can be seen. 

Finally, in this example it has been assumed that the starting positions of the vehicles were at 

the ends of their respective initial tracks. It is important to note that the procedure is the same 

if the starting points are outside the field, e.g., the location of a garage, a depot or any other 

point. In this case, it is only necessary to add to the vehicle trajectory, the initial transition that 

allows to go from the starting point with an initial orientation to the entry point on the first 

track with the required orientation. Similarly, when the end points are outside the crop, the 

final transitions from the exit points of the course to the defined end points shall be added to 

the trajectory. 


